

Signature Analysis: A New Digital Field

Service Method

In a digital instrument designed for troubleshooting by
signature analysis, this method can find the components
responsible for well over 99% of all failures, even
intermittent ones, without removing circuit boards from

the instrument.

by Robert A. Frohwerk

ITH THE ADVENT OF MICROPROCESSORS

and highly complex LSI (large-scale inte-
grated) circuits, the engineer troubleshooting digital
systems finds himself dealing more with long digital
data patterns than with waveforms. As packaging
density increases and the use of more LSI circuits
leaves fewer test points available, the data streams at
the available test points can become very complex.
The problem is how to apply some suitable stimulus to
the circuit and analyze the resulting data patterns to
locate the faulty component so that it can be replaced
and the circuit board returned to service.

The search for an optimal troubleshooting al-
gorithm to find failing components on digital circuit
boards has taken many directions, but all of the ap-
proaches tried have had at least one shortcoming.
Some simply do not test a realistic set of input condi-
tions, while others perform well at detecting logical
errors and stuck nodes but fail to detect timing-
related problems. Test systems capable of detecting
one-half to two-thirds of all possible errors occurring
in a circuit have been considered quite good. These
systems tend to be large, for factory-based use only,
and computer-driven, requiring program support and
software packets and hardware interfaces for each
type of board to be tested. Field troubleshooting,
beyond the logic-probe capability to detect stuck
nodes, has been virtually neglected in favor of board
exchange programs.

The problem seems to be that test systems have too
often been an afterthought. The instrument designer
leaves the test procedure to a production test en-
gineer, who seeks a general-purpose solution because
he lacks the time to handle each case individually.

Obviously it would be better if the instrument de-
signer provided for field troubleshooting in his origi-
nal design. Who knows a circuit better than its origi-
nal designer? Who has the greatest insight as to how
to test it? And what better time to modify a circuit to
accommodate easy testing than before the circuitis in
production?

New Tools Needed

But here another problem arises: what do we offer
the circuit designer for tools? A truly portable test
instrument, since field troubleshooting is our goal,
would be a passive device that merely looked at a
circuit and told us why it was failing. The tool would
provide no stimulus, require little software support,
and have accuracy at least as great as that of
computer-driven factory-based test systems.

Cover: Those strange-look-
ing strings of four alpha-
numeric characters on the
instrument’s display and the
schematic diagram are sig-
natures, and the instrument
. is the 5004A Signature Ana-
" lyzer, a troubleshooting tool
. for field repair of digital sys-

tems. W.'th a failing system operating in a self-
stimulating test mode, the service person probes
various test points, looking for incorrect signa-
ture displays that can point to faulty components.

In this Issue:

Signature Analysis: A New Digital
Field Service Method, by Robert A.
FRONWOIK o v s s vnssnine page 2

Easy-to-Use Signature Analyzer
Accurately Troubleshoots Complex
Logic Circuits, by Anthony Y. Chan ..

Signature Analysis—Concepts, Ex-
amples, and Guidelines, by Hans J.
Nadig page 15

Personal Calculator Algorithms |I:
Square Roots, by William E. Egbert . .

page 9

page 22

© Hewlett-Packard Company, 1977

Personal Calculator Algorithms |

Square Roots

A detailed description of the algorithm used in Hewlett-
Packard hand-held calculators to compute square roots.

by William E. Egbert

EGINNING WITH THE HP-35,"? all HP personal

calculators have used essentially the same al-
gorithms for computing complex mathematical func-
tions in their BCD (binary-coded decimal) micro-
processors. While improvements have been made in
newer calculators,? the changes have affected primarily
special cases and not the fundamental algorithms.

This article is the first of a series that examines
these algorithms and their implementation. Each
article will present in detail the methods used to
implement a common mathematical function. For
simplicity, rigorous proofs will not be given, and
special cases other than those of particular interest
will be omitted.

Although tailored for efficiency within the environ-
ment of a special-purpose BCD microprocessor, the
basic mathematical equations and the techniques
used to transform and implement them are applicable
to a wide range of computing problems and devices.

The Square Root Algorithm

This article will discuss the algorithm and methods
used to implement the square root function.

The core of the square root algorithm is a simple
approximation technique tailored to be efficient
using the instruction set of a BCD processor. The tech-
nique is as follows:

Vx is desired
. Guess an answer a
. Generate a?
. Find R=x-a?
. Ifthe magnitude of R is sufficiently small,a = Vx.
. IfR is a positive number, a is too small.
IfR is a negative number, a is too big.
Depending on the result of step 5, modify a and
return to step 2.
The magnitude of R will progressively decrease until
the desired accuracy is reached.

This procedure is only a rough outline of the actual
square root routine used. The first refinement is
to avoid having to find a? and x —a? each time a is
changed. This is done by finding a one decade at a
time. In other words, find the hundreds digit of a,
then the tens digit, the units digit, and so on. Once

Qo W=

6.

22

the hundreds digit is found, it is squared and sub-
tracted from x, and the tens digit is found. This pro-
cess, however, is not exactly straightforward, so some
algebra is in order.

The following definitions will be used:

x = the number whose square root is desired

a = most significant digit(s) of Vx previously
computed

b = the next digit of Vx to be found

j = the power of 10 associated with b

R, = x—a?, the current remainder
a; = the new a when digit b is added in its
proper place. a; = a +(b x10)) (1)
R, = the portion of remainder R, that would be
removed by adding b toa. R, = a‘i'—a’ (2)
For example, let x = 54756. Then Vx = 234.
Let a = 200.
b the digit we are seeking (3, in this case)
j 1 (the 10’s digit is being computed)
R, = 54756 —(200)? = 14756.
Note that a; and R, will vary with the choice of b.
The process of finding Vx one decade at a time
approaches the value of VX from below. That is, at
any point in the computation,a <Vx. Consequently,
R, =0.
With this in mind it is easy to see that for any
decade j, the value of b is the largest possible digit so
that

R, - Ry =0
or
Hh = Ha.
Using equations 1 and 2 we have

(3)

R, = [a+(bx10))? - aZ2.
Expanding and simplifying,
Ry, = 2abx10'+(b x10))2, (4)
Inserting (4) into (3) yields the following rule for
finding digit b.
Digit b is the largest possible digit so that
2abx10'+(bx10)2 <R, (5)
When the digit that satisfies equation 5 is found, a
new a is formed by adding bx 10/ to the old a, the
decade counter (j) is decremented by 1, and a new
R, is created; the new R, is the old R, minus R,

Continuing the previous example,
x = 54756
j =
a = 200
x—a? =R, = 14756
Applying equation 5 to find b:

R, =

b 2abx10'+(b x10')?2 R,—Ry
0 0 14756
1 4100 10656
2 8400 6356
3 12900 1856
4 17600 -2844

Thus b=3, since b=4 causes overdraft, i.e.,
R,—R;, <0. The new a=200+3x10'=230. The new
R,=1856, the new j=0. With these new parameters,
the units digit can be found.

This process may seem vaguely familiar, which is
not surprising since upon close inspection it turns
out to be the (usually forgotten) scheme taught in
grade school to find square roots longhand. Of course,
trailing zeros and digits are not written in the long-
hand scheme.

To make this process efficient for a calculator, still
another refinement is needed.

(bx10%)2 can be expressed as a series, using the
fact that the square of an integer b is equal to the sum
of the first b odd integers. Thus,

(bx10)? = b? x10%
b .
= ¥ (2i-1)x10%
i=1
For example,
(3x107)? =1x109+3x10% +5x10%
=9x10%

Thus 2ab x10'+(b x10')? can be expressed as:

b
2abx10'+(bx10)? = I 2ax10' +(2i—1) x10%
i=1
or
b . .
Ry, = Y 2ax10'+(2i—1)x10% (6)
i=1

Now comes a key transformation in the square root
routine. It was shown earlier how inequality 3 will

23

give the value b for the next digit of a. Since multi-
plying both sides of an inequality by a positive con-
stant does not change the inequality, equations 3 and
6 can be multiplied by the number 5.

5B, < 5R,

b
5Rp = ¥ 10ax10+(10i—5)x10% (7)
i=1

b becomes the largest digit so that 5R, <5R,. The new
5R, is equal to the old 5R, minus 5R,.

These transformations may seem useless until we
examine a few examples of the last term of the right
side of (7) for various values of b.

10a X10'+05%x 103, b=1
10a x10+15%x10%, b=2
10a x10'+25x10%, b=3

Notice that the two-digit coefficient of 10% con-
sists of (b—1) and a 5. These two digits will be ex-
pressed as (b—1)|5 in succeeding equations. 10a is
formed by a simple right shift and does not change
between terms. If the sum defined in equation 7, as
b is incremented by 1, is subtracted from 5R, until
overdraft occurs, the digit in the next-to-last digit
position is b. Best of all, it is in the exact posi-
tion to form the next digit of a without further ma-
nipulation. Redoing the previous example may help
clarify matters.

R, = 14756
i=1
a = 200
5R, = 73780
b 10ax10'+(b-1)|5x10% 5R,—5R}
1 20500 53280
2 21500 31780
3 22500 9280 new 5R,
4 23500 —14220 overdraft
new value of a
digits

Notice that when overdraft occurs the new value of
a is already created and the new value of 5R, can be
found by restoring the previous remainder.
Decrementing the value of j would cause, in effect,
(10a x10%) to shift right one place, and (b—1) | 5x10¥ to
shift right two places. The result is that the final 5
shifts one place to the right to make room for a new
digit. Continuing with the same example,
5R, = 9280
a =230
j=0

b 10ax10'+(b-1)|5x10% 5R,—5R,

1 2305 6975

2 2315 4660

3 2325 2335

4 2335 0 remainder
5 2345 —2345 overdraft

finala = V' x

For ease of understanding, the preceding example
treated a large positive number. A number in the cal-
culator actually consists of a mantissa between 1 and
10 and an exponent. The problem is to find the square
root of both parts of this argument. Happily, if the
input exponent is an even number, the portion of the
answer resulting from it turns out to be the exponent
of the final answer and is simply the input exponent
divided by 2. Thus to find Vx, the exponent of x is
first made even and the mantissa shifted to keep the
number the same. The exponent of Vx is found by
dividing the corrected input exponent by 2. The
method described above is then used to find the
square root of the shifted input mantissa, which (after
possibly being shifted) can be between 1 and 100. The
result will then be between 1 and 10, which is the
range required for the mantissa of Vx.

During the process of finding VX the remainder
R, progressively decreases. To avoid losing accu-
racy, this remainder is multiplied by 10! after finding
each new digit b. This avoids shifting a at all, once
the square root extraction process begins. A 12-digit
mantissa is generated, which insures accuracy to
=1 in the tenth digit of the mantissa of V'X.

In summary, the computation of Vx proceeds as
follows:

1. Generate exponent of answer.

2. Multiply mantissa by 5 to create original 5R,

3. With an original a of 0, use the method de-
scribed above to find 12 b digits to form the
mantissa of the answer,

4, Round the mantissa and attach the exponent
found previously.

5. Display the answer.

The calculator is now ready for another operation. £

References

1. T.M. Whitney, F. Rodé, and C.C. Tung, ""The ‘Powerful
Pocketful': An Electronic Calculator Challenges the Slide
Rule,” Hewlett-Packard Journal, June 1972.

2. D.S. Cochran, ‘““Algorithms and Accuracy in the
HP-35,”" Hewlett-Packard Journal, June 1972.

3. D.W. Harms, “The New Accuracy: Making 23=8,"
Hewlett-Packard Journal, November 1976.

William E. Egbert

Bill Egbert is a project leader at
HP's Corvallis, Oregon Division.

He produced this series ot algorithm
articles as part of his work on the
HP-67 and HP-87 Programmable
Calculators. He was project leader
for the HP-67 and did micro-
programming for both calculators.
Bill received his BSEE degree from
Brigham Young University in 1973
and his MSEE fram Stanford Uni-
versity in 1976. He's been with HP
since 1973, Born in Fallon, Nevada,
he's married, has two small children,
and lives in Corvallis.

Hewlett-Packard Company, 1501 Page Mill
Road, Palo Alto, California 94304

HEWLETT-PACKARD JOURNAL

Bulk Rate

U S Postage
Paid
Hewlett-Packard
Company

O F A D D R E S S . To change your address or delete your name from our mailing list please send us your old address label (it peels off),
C H A N G E . Send changes to Hewlett-Packard Journal, 1501 Page Mill Road, Palo Alto, California 94304 U.S.A. Allow 60 days.

