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A Complete Self-Contained Audio Measurement System, by James D. Foote This new
audio analyzer has everything needed for audio measurements—source, filters, detectors,
voltmeter, and counter—all under microprocessor control.

Audio Analyzer Applications The major areas are general audio testing, trans-
ceiver testing, and automatic systems.

Making the Most of a Microprocessor-Based Instrument Controller, by Corydon J. Boyan
In an audio analyzer, microprocessor control means automatic operation, “guaranteed”
accurate measurements, and extra features.

Design for a Low-Distortion, Fast-Settling Source, by George D. Pontis It's based on a
state-variable filter with refinements.

Floating a Source Output, by George D. Pontis The floating output lets the user eliminate
ground-loop errors, sum signals, and add dc offsets.

A Digitally Tuned Notch Filter, by Chung Y. Lau It eliminates the fundamental frequency
component of the incoming signal for distortion and noise measurements.

A Custom LSI Approach to a Personal Computer, by Todd R. Lynch Nine HP-produced
large-scale integrated circuits make the HP-85 possible.

Handheld Calculator Evaluates Integrals, by William M. Kahan Now you can carry in your
pocket a powerful numerical integrator like those available on large computers.

In this Issue:

Audio frequencies are frequencies within the range of human hearing, roughly 20 Hz to 20
kHz. Frequencies on either side of this range are often loosely classified as “audio,” too.
Thus, the frequency range of the instrument shown on the cover, Model 8903A Audio
Analyzer (page 3), is 20 Hz to 100 kHz. The 8903A is used for testing—among other
&= things—many of the electronic devices that speak to us or play music, such as CB radios and

. high-fidelity systems. In our cover photo it's shown plotting the frequency response of the
stereo amplifier on the left at different signal levels.

: ' There are, of course, other ways of making the measurements in the 8903A’s repertoire.
What rnakes the 8903A better? First, it's a complete system that includes a low-distortion signal source, a
counter, a voltmeter, and various filters and detectors. Second, all of this is under microprocessor control,
automatically stepping through complicated sequences of measurements and computations. Third, it's ex-
tremely accurate; for example, it can measure total harmonic distortion (THD) down to 0.003% under normal
conditions. Fourth, the 8903A has recorder outputs that make plotting results about as easy as it can be.

If you're not so fortunate as to have studied integral calculus in school, the integral of a function probably isn't
the familiar and highly useful concept that it is to scientists and engineers. One way to think of an integral is this:
draw the graph of the function as a meandering line on a piece of graph paper. Then the integral of the function is
the area bounded by 1) the graph of the function, 2) the horizontal axis of the graph paper, and 3) two vertical
lines called the upper and lower limits of integration. Sometimes the integral of the function can be expressed
neatly in mathematical terms, but more often than not it can't. So various methods have been devised for
estimating integrals using computers. Because most of these numerical integration programs run on very, very
large computers, it seems like a small miracle that you can now carry a numerical integrator—a very good
one—around in your pocket. Beginning on page 23, its designer tells us about its capabilities and limitations.

On page 18 is an article about the nine special integrated circuits that make the HP-85 Computer possible.
This set of custom integrated circuit chips minimizes the cost of the electronics, eases the problem of cooling the
computer, makes the small package possible, and provides features that couldn't have been included otherwise.

-R. P. Dolan

Editor, Richard P. Dolan e Associate Editor, Kenneth A. Shaw » Art Director, Photographer, Arvid A. Danielson
llustrator, Nancy S. Vanderbloom e Administrative Services, Typography, Anne S. LoPresti » European Production Manager, Dick Leeksma
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A Custom LSI Approach to a Personal

Computer

by Todd R. Lynch

was featured in last month’s issue, is a system totally

integrated into a single package. Included in this
system are a CRT, printer, tape drive, and keyboard. To
control the IO ({input/output} devices and to interface to
ROM (read-only memory) and RAM (random-access mem-
ory), the design uses LSI (large-scale integrated) circuits
designed and fabricated by Hewlett-Packard.

The design of custom chips minimizes the cost of the
electronics. Also, the power dissipation is reduced to a level
that permits the use of air-convection cooling, eliminating
the need for a fan. The LSI designs save large amounts of
printed-circuit-board space, making a small system pack-
age possible. By designing LSI circuits dedicated to each
mechanical subassembly, features can be added to the over-
all system that would be nearly impossible to incorporate
with discrete logic designs.

THE NEW HP-85 PERSONAL COMPUTER, which

HP-85 LSI Chip Set
There are nine custom LSI circuits in the HP-85. These
circuits are interconnected as shown in Fig. 1. Eight of the
LSl circuit designs use NMOS technology. The ninth circuit
uses a bipolar technology with two layers of metallization.
The heavy emphasis on LSI design makes the HP-85 very
compact. The electronics in the machine consists of these
circuits plus a power supply, clock generator, CRT raster
scan circuitry, and various motor and printhead drive cir-
cuits.
The system is partitioned as follows.
s CPU (central processing unit). The CPU commands the
bus control lines and interfaces directly to the system
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Keyboard
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operating commands (firmware) stored in the four ROMs.
» ROMSs. Each ROM chip has the same basic custom design,
differing only in the bit pattern permanently stored on
each chip.
» Read/Write Memory. The user memory consists of eight
commercially-available dynamic 16K x1 RAM:s.
s RAM Controller. This chip is designed to interface be-
tween the CPU and the RAMs.
s Buffer. This chip is designed to provide the capability for
system expansion by adding plug-in units in the rear of
the machine.
Keyboard Controller.
Printer Controller.
CRT Controller.
Display Memory. Four commercial dynamic 16K x1
RAMs are used to store data for the display. Approxi-
mately one-fourth of this memory is used for the alpha-
numeric data and the remainder is used for graphic data.
s Cartridge Controller.
» Sense Amplifier. This bipolar chip interfaces the tape
cartridge controller to the magnetic tape head.
Table Iis a summary of the custom LSI chip sizes, number
of pins (wiring connection points), and power dissipation.
The machine’s sixteen-bit address allows direct access to
65,536 bytes of information. The memory map in Fig. 2
shows how this space is allocated. Note that 32K bytes of the
address space are devoted to ROM while 16K bytes are for
RAM. Additional RAM and ROM capacity may be added to
the system. The I/O address space occupies the upper 256
bytes of memory. Each /O device controller has from two to
four dedicated addresses assigned to it.

ridge Fig. 1. The HP-85 system block
Controller

diagram contains nine custom LS!
circuit designs. The user and dis-
play memories are the only parts in
the diagram that use commercially
available circuits. The develop-
ment of custom circuits enabled
the system to be contained in a
compact package at low cost and
without the need for a cooling fan.

Motor




Table |
Custom LSI circuit characteristics. All of the circuits are fabricated
with NMOS silicon gate technology except for the sense amplifier
which is made with dual-layer-metallization bipolar technology.

Circuit: Size (mm) #Pins  Power (mW)
CPU 4.93x4.01 28 330
ROM 4.75%X5.41 28 200
RAM Controller 2.67%3.56 40 220
Buffer 2.54X%3.35 40 340
Keyboard Controller 3.78x4.39 42 200
Printer Controller 4.78%5.44 40 300
CRT Controller 4.14%5.51 40 200
Cartridge Controller 3.63x3.86 28 55
Sense Amplifier 1.50%1.55 16 150

CPU Design

Several commercially available CPUs were considered at
the beginning of the project, but none could provide all the
features needed to efficiently implement a powerful scien-
tific BASIC language machine. BASIC requires high-
precision arithmetic, which is best accomplished with dec-
imal rather than binary numbers. Many different stacks are
needed to parse (separate a statement into executable steps)
and execute the language. The ability to handle variable-
length data is required for variable-length tokens (bit se-
quences from one to several bytes in length), and multilevel
vectored interrupts are needed to handle the IO devices in
real time. The design of the custom NMOS CPU incorpo-
rates all of these requirements plus many more.

Fig. 3 shows a block diagram of the HP-85 CPU. Major
blocks are the 7000-bit PLA (programmable logic array),
64-byte register bank, and eight-bit ALU (arithmetic logic
unit) and shifter. Each CPU instruction is decoded by a
microprogram in the PLA that directs the rest of the chip to
perform the desired function.

A very powerful feature of the CPU, which is incorpo-
rated into the PLA microprogram, is the ability to handle

256 Bytes
ook UM 7/, Vrused

‘ Plug-in
RAM

Fig.2. The HP-85memory map allocates four 8K-byte system
ROMs and one 16K-byte internal RAM. The RAM is used for
user memory and 256 dedicated /0 locations. By using bank
selection, up to six more 8K-byte ROMs may be added. The
RAM may be expanded by 16K bytes if a plug-in module is
added to the system.

64 Byte
Static
RAM

Address

[X.". -3 Address

Fig. 3. The CPU in the HP-85 is a custom NMOS circuit de-
sign. A 7K-bit programmable logic array (PLA) controls the
interactions between the register bank, the ALU, and the rest
of the HP-85 system.

data ranging from one to eight bytes in length. This multi-
byte feature lets the programmer, for example, add two
eight-byte mantissas, increment a sixteen-bit address, or
load into the CPU a three-byte token from memory, each
with a single instruction. With an off-the-shelf CPU, this
would require setup and iteration within a software loop.

The eight-bit ALU is capable of shifting and can do both
decimal and binary arithmetic. The programmer sets a
mode bit to specify the type of shifting or arithmetic de-
sired. This, combined with the multibyte feature, lets the
programmer easily work with signed, floating-point man-
tissas up to sixteen digits in length or two’s-complement
binary integers up to sixty-four bits in length.

Of the 64 eight-bit registers contained in the CPU, one
pair is dedicated to the program counter, one pair to the
stack pointer, and one pair to internal index calculations.
The rest are general-purpose registers. One advantage of
having a register as the program counter is that it can easily
serve as one of the operands for any CPU instruction. If it is
modified by an instruction, then an immediate jump to the
new location occurs. The stack pointer points to the sub-
routine return address stack stored in memory. Additional
stacks can be created with any other consecutive pair of
registers in the CPU. Thus, the programmer can maintain
many different stacks at any one time. Sixteen instructions
are dedicated to manipulating data on the currently desig-
nated stack. Any pair of consecutive registers can also be
used as a sixteen-bit index register. This lets the program-
mer index into several data arrays at the same time.

To handle real-time I/O devices, the CPU has multilevel
vectored interrupt handling ability. Up to 127 interrupt
vectors can be accommodated by the architecture. The CPU
can also be halted by an external device. This lets that
device control the system bus, so it can have direct memory
access at high speeds.

No accumulator is present in the CPU. This is made
possible by the design of the 64-byte register bank. The
registers are constructed as a two-read/one-write memory.
This means that, at a given time, any two bytes can be read
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Fig. 4. independent control of each word line is used to
achieve a cell that can be read out onto either bitline. The RAM
made up with these cells can be read two words at a time.

from the memory and operated on in the ALU. The result is
returned to one of the accessed byte locations. This se-
quence takes one processor cycle (1.6 us).

To design a two-read/one-write memory, a standard static
RAM cell with a special variation is used (see Fig. 4). In a
normal static RAM cell, a common word line enables both
transmission gates between the bit lines and the cell. In a
two-read cell, there must be two different word lines. Word
line A enables complement information from one cell to be
read out onto the Q-bit line while word line B enables true
information from another or the same cell to be read out on
the Q-bit line.

The circuit design of such a cell must be done carefully.
Since the bit lines are precharged before reading, it is pos-
sible that by enabling a single word line, a cell could be
made to flip (change state) rather than be read. Inadvertent
flipping is prevented by using a low voltage for the word
line and a proper size ratio between the cell’s pull-down
transistor and the transmission gate.

The static RAM cell’s pull-up device also received close
scrutiny during the design phase. A cell with a low-power
depletion-load pull-up requires an area larger than 6400
square micrometres (10 square mils) and a quiescent power
of 120 microwatts. By using a polysilicon pull-up resistor,
the RAM cell area is reduced by 40% and the power is
reduced by 80%. The savings in area amounts to a reduction
in size of more than 0.25 mm on each side of the die. The
reduction in total power consumption is fifty milliwatts.

To obtain these reductions, a polysilicon resistor process
was developed for the CPU. An additional masking step is
required to define the regions on the chip where the
polysilicon layer is lightly doped, hence creating the poly-
silicon resistors. The doping level was chosen for a sheet
resistance of 10”7 ¥o. An undoped layer could not be used
because the sheet resistance was so high that the junction
leakage currents at elevated temperatures resulted in un-
welcome voltage drops across some resistors. It was also
discovered that if the contact mask overlapped the polysili-
con resistor area, the aluminum metallization could spread
into the lightly doped resistor and lower its resistance.
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System Control and Timing

Eight bus and three control lines leave the CPU. The
eight-bit bus is used to time-multiplex a sixteen-bit address,
instructions, and multibyte data quantities. The three con-
trol lines—LMA (load memory address), RD (read) and WR
(write)—indicate to the system circuits what type of infor-
mation is on the bus.

When LMA is low, all chips in the system know that one
byte of a two-byte address will be placed on the bus. The
LMA signals always come in pairs since all addresses are
sixteen bits. Each chip in the system reads this address and
compares it to the address range to which the chip is sup-
posed to respond. Setting RD low indicates that the CPU
wants to read the contents of the address most recently sent
out. When WR goes low, the CPU wants to write into the
location most recently addressed.

The multibyte feature is accomplished by sending out an
address with two LMA signals followed by one to eight RD or
WR signals. The circuit being read from, or written to, is
expected to increment its memory address register every
time it sees a RD or WR. The CPU sometimes can fetch
consecutive instructions from memory by simply sending
out additional RD commands. This speeds up the instruc-
tion rate of the machine since sending out an address for
every instruction and piece of data is not necessary.

Four nonoverlapping phases (Fig. 5) with 200 ns width
and 200 ns spacing clock the circuits in the HP-85. In one
cycle the system can access a preaddressed memory loca-
tion, read it into the CPU, add it to a CPU register and store
the result in the CPU register. An eight-byte add requires
eight cycles plus the time to fetch the command, which is
usually three cycles.

Before any chip writes on the bus, the bus gets precharged
to alogic one. Therefore, the circuit desiring to put a one on
the bus must merely continue to hold the bus high. If it
wants a zero, it must discharge the bus. In NMOS technol-
ogy it is easier to discharge a bus than to bring it high.
Consequently, the circuits were designed with large de-
vices to discharge the bus and relatively small devices to
maintain a high level on the bus. This minimizes the chip
area required for each circuit’s driver logic.

The system bus has fewer spurious transitions using the

w1
b12 ,_1
b2 I_—I
#21 1
LR Precnerge
Bus to cpu [T IFicat/ precnarge TR
Bus from cpu J]TTTFioat] Y

1)

il
Fig. 5. HP-85 system timing and control. The control lines are
valid by the time the 12 clock pulse occurs. If a system chip is
to be read, it must respond during the ¢2 clock pulse. informa-
tion then enters the CPU, goes through the ALU, and is stored
during the next ¢1 clock pulse. When the CPU sends out
addresses or data, they are valid by the time the &1 clock
pulse occurs.

-

LMA, RD, WR

Precharge



precharged scheme. Timing is such that the driving circuit
is not enabled until its data is valid and ready to go on the
bus. It is not possible to discharge the bus inadvertently
when the chip wants a logic one to be output.

ROM

The NMOS system ROM is organized as an 8K by eight-
bit array. Because this circuit must respond to multibyte
transfers, its memory address register is designed to incre-
ment as RD commands are given. The circuit can be enabled
or disabled by a bank select command. When plug-in ROMs
are used, it becomes necessary to selectively enable or dis-
able ROMs in the address space from 24K to 32K (Fig. 2).
Each ROM in this address space has a unique eight-bit bank
number, and only one bank can be active at any given time.

The core of the ROM consists of 64-input, minimum
geometry, NAND gate arrays. The principle of operation is
to precharge the NAND stack from both ends. This requires
600 ns. At the beginning of phase ¢12, one 64-device stack
per bit of output is selected. If the stack discharges, the bus
bit will be a zero, otherwise it will be a one. The transistors

in the stack are preprogrammed during fabrication with the
depletion mask. A depletion transistor is a logic zero, an
enhancement transistor is a logic one. A high voltage on
either transistor causes conduction, while a low voltage
causes conduction only through the depletion device.

When trying to discharge a 64-device stack, 63 inputs are
high and the selected bit is low. If a depletion device is at
that location, the stack discharges, producing a zero.

RAM Controller

The NMOS RAM controller chip interfaces the CPU to
eight 16K dynamic RAMs. Because it isa memory controller
chip it has an incrementing memory address register. Also,
the address space to which it responds is mask program-
mable. Therefore, a RAM controller chip different from the
one in the mainframe of the HP-85 is used for the 16K RAM
plug-in. This chip knows not to respond to dedicated 'O
addresses in the upper 256 bytes of memory.

An important function of the RAM controller chip is
refreshing the dynamic memory. An internal timer on the
chip tells it when the next sequential location is due to be

The HP-85 Software Developmént Syéteﬁl
by Nelson A. Mills

The HP-85 is based upon a new eight-bit custom processor. One of
the first steps in the development of the machine was to provide a set
of software development tools. The HP-85 software development
system consists of an assembler, a hardware interface for the HP-85
simulator, and software debug system (see Fig. 1).

The assembler for the HP-85 processor was designed to run on an
HP 1000 Computer, The assembler supports the full range of the
HP-85 processor's instruction set and provides several useful
pseudo-operations. Programs may be either absolute or relocatable
and the program origin may be reset at any time. Several instructions
are provided to facilitate data definition and may exist locally within

e s .-:‘ et
i

Debug Module

Interrupt —»
Halt (DMA Request)—» i

HP-85 Electronics i

Fig. 1. HP-85 software development system.

the program, or may be retrieved from afile of global data definitions.

The hardware interface designed for the HP-85 software develop-
ment system provides the ability to use an HP 1000 to control execu-
tion of the HP-85 simulator. The interface contains an on-board RAM
which can be downloaded from the HP 1000 and is used to simulate
the HP-85 ROM. Included are two breakpoint registers which can be
used to halt execution of the HP-85 processor at either of two
specified addresses. The processor can be made to execute stepsin
either a continuous-run mode, or in a single-step mode where execu-
tion halts after each instruction. The interface also provides the ability
to halt the HP-85 processor at any time, and to read data from or write
data to the system RAM or CPU registers.

The software debug system, provided as part of the development
system, runs in the HP 1000 and performs four important functions. It
includes a relocatable loader that is used to download the RAM on the
interface board with the software under development. It controls
execution of the HP-85 simulator via the interface board. It displays
the current status of the breadboard, including CPU status, program
counter, and the current contents of all CPU registers and any
specified memory locations. Finally, it provides the means for system
developers to modify the contents of memory, registers, status, or
program counter, and to clear and set breakpoints.

Nelson A. Mills
Joining HP in 1876, Nelson Mills worked
on the HP-85 operating system and in-
terpreter. He is now the project man-
ager for high-end firmware at the Cor-
vallis Division. After receiving a BS in
mathematics from Albion College,
Michigan in 1961, Nelson spent five
years in the U.S. Navy and then worked
_ forten years as a systems programmer.
- He and his family—wife and two
" children—live in Corvallis, Oregon.
Outside of working hours Nelson enjoys
' photography, hiking, camping, and
Bl coaching basketball and AYSO soccer.
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refreshed. The chip then waits for a cycle when memory is
not being accessed to do the refresh. There is a two-element
queue in case a vacant memory cycle does not come before
the following location must be refreshed.

Keyboard Controller

The circuit needed just to interface to the keyboard would
have been quite small. Consequently, four programmable
timers were added to this NMOS chip. The timers can count
up to 27 hours with one-millisecond resolution. Each has a
maskable interrupt. When the timer gets to its preset count,
it interrupts, resets and counts again.

The keyboard portion of the chip can scan an 8<10-key
keyboard plus three dedicated keys—shift, control, and
caps lock. The key debounce time is mask programmable
from 1.67 to 11.69 ms. After the key has been debounced,
the chip generates an interrupt. An internal ROM is used to
convert the key position to its ASCII* equivalent.

Another feature of the chip is an output to a speaker for
audio tones. Via firmware, a 1.2-kHz output tone can be
obtained, or the frequency can be varied by periodically
setting and clearing an internal flip-flop. This output can be
accessed by the programmer using a command that can
specify the frequency and duration of the tone.

CRT Controller

The NMOS CRT controller! interfaces the CPU to a
127-mm diagonal CRT and its dedicated display memory.
The memory is four 16K x 1 dynamic RAMs. This is enough
storage to hold a full display of graphics information
(256x192 dots) plus four displays of alphanumeric infor-
mation (4 x32 characters/line X 16 lines/display). The chip
must make sure that this memory is properly refreshed
during the vertical retrace. The interface to the video drive
circuitry consists of a vertical sync pulse (60 Hz), a horizon-
tal sync pulse (15.7 kHz), and a video line (4.9 MHz). An
internal ROM provides a dot pattern translation of the
stored ASCII characters.

Printer Controller

The NMOS printer controller? is the interface between
the CPU and the thermal moving-head printer. To perform
this function, the circuit must control a printhead drive
motor, a paper advance motor and an eight-dot printhead.
An internal 32-byte RAM allows firmware to buffer one
print line of alphanumeric data at a time. An internal
ROM translates an ASCII character into its appropriate
dot pattern.

Tape Controller and Read/Write Amplifier

The NMOS tape controller and the bipolar read/write
amplifier? control the tape unit in the HP-85. The read/write
amplifier reads and writes data on the tape through a two-
track magnetic head. The tape is formatted using a 1:1.75
delta distance code, in which 8-kHz flux reversals represent
zeros and 4.6-kHz flux reversals represent ones.

The tape controller encodes digital information into this
format and sends it to the read/write amplifier. When read-
ing the tape, the signals from the read/write amplifier are
decoded by the controller. The tape drive motor direction
and speed are also controlled by the chip.

*American Standard Code tor information Interchange
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Buffer

The NMOS buffer is the ninth chip in the system. With its
help, the system bus can be expanded to include all of the
plug-in /O slots. It is capable of driving a 150-pF load. The
delay between NMOS-level input and NMOS-level output
is 50 ns. The signals that the buffer passes are eight bus
lines, three control lines, and the interrupt and halt lines.
The bus and control lines are designed to be bidirectional.

The clock lines are not buffered since this would cause
unwanted skewing. The clock generator is capable of driv-
ing all internal as well as all external loads.
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Handheld Calculator Evaluates Integrals

The HP-34C is the first handheld calculator to have a key
that performs numerical integration almost automatically.
It may change your attitude towards what used to be

regarded as a dreary tedious task.

by William M. Kahan

of about two thousand books and learned papers,

with a dozen or so “‘new’” methods published every
year. And yet the task in question has a simple geometrical
interpretation seen in Fig. 1: given an expression f(u) and
lower and upper limits y and x respectively, the value

N UMERICAL INTEGRATION has been the subject

I= f; f(u) du

represents the area under the graph of f(u) for u between y
and x. Why so much fuss?

As I write this an electrical engineering colleague, Pro-
fessor J. R. Woodyard, enters my office and asks to have

(a2
11_,[) (u—l lnu)du

evaluated on my HP-34C Calculator (Fig. 2). Let’s do it.

Step 1. Key into the calculator under, say, label A a pro-
gram that accepts a value u in the display (X regis-
ter) and displays instead the computed value of the
integrand

Vu/(u-1) - 1/(ln u)

Fig. 3 shows an HP-34C program to do this.

Step 2. Restore the calculator to RUN mode and set the dis-
play to, say, FIX 5to display five decimal digits after
the point, which are as many digits of the integrand
as my client says he cares to see. (More about this
later.)

Step 3. Key in the lower and upper limits of integration
thus, 0 ENTER?" 1, thereby putting 0 into the Y reg-
ister and 1 into X.

Step 4. Press [, ; A, wait 25 seconds until the display shows
0.03662, then press xsy to see 0.00001. We
have just calculated

I, = 0.03662 = 0.00001.

That was easy—too easy. Woodyard smiles as if he knew
something I don’t know. Could the calculator be wrong?
How does the calculator know the error lies within +0.000017
Many other questions come to mind:

Why is numerical integration impossible in general?
Why do we persist in trying to do it anyway?

How do we do it? How well do we do it?

How does the f;( key compare with other integration
schemes?

= What can go wrong and how do we avoid it?
s What else have we learned?
These questions and others are addressed in the following

pages.

Tolerance and Uncertainty

Integrals can almost never be calculated precisely. How
much error has to be tolerated? The | ; key answers this
question in a surprisingly convenient way. Rather than be
told how accurately I = f;,‘ f(u)du should be calculated, the
HP-34C asks to be told how many figures of f(u) matter. In
effect, the user is asked to specify the width of a ribbon
drawn around the graph of f(u), and to accept in place of
I an estimate of the area under some unspecified graph lying
entirely within that ribbon. Of course, this estimate could
vary by as much as the area of the ribbon, so the calculator
estimates the area of the ribbon too. Then the user may
conclude from Fig. 4 that

I = (area under a graph drawn in the ribbon)
+ (1 area of the ribbon)

The calculator puts the first area estimate in its X register
and the second, the uncertainty, in the Y register.

For example, f(u) might represent a physical effect whose
magnitude can be determined only to within, say, +0.005.
Then the value calculated as f(u) is really f(u) = Af(u) with
an uncertainty Af(u) = 0.005. Consequently FIX 2, which
tells the calculator to display no more than two decimal
digits after the point, is used to tell the calculator that
decimal digits beyond the second cannot matter. Therefore
the calculator need not waste time estimating [ = Al =
f;,‘ (f(u) + Af(u))du more accurately than to within an
uncertainty Al = |fJ Af(u)dul|. This uncertainty is esti-
mated together with I + Al, thereby giving the calculator’s
user a fair idea of the range of values within which I
must lie.

x
Areal = fy f(u) du

T
u=y u=x

Fig. 1. An integral interpreted as an area.
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Fig.2. HP-34C Calculator has keys to solve any equation and
to compute integrals.

The uncertainty Af(u) is specified by the user via the dis-
play setting. For instance, SCI 5 displays six significant
decimal digits, implying that the seventh doesn’t matter.
The HP-34C allows the user’s f-program to change the dis-
play setting, thereby providing for uncertainties Af(u)
that vary with u in diverse ways. But users usually leave
the display set to SCI 4 or FIX 4 without much further
thought.

By asking the user to specify Af(u) instead of Al the
HP-34C helps avoid a common mistake—wishful think-
ing. Other integration procedures, which conventionally
expect the user to specify how tiny Al should be, blithely
produce estimates of I purporting to be as accurate as the
user wishes even when the error Af(u) is far too big to justify
such claims to accuracy. The HP-34C does not prevent us
from declaring that f(u) is far more accurate that it really is,
but our attention is directed to the right question and not dis-
tracted by questions we cannot answer. Whether we spec-
ify Af after a careful error analysis or just offer a guess, we
get estimates I £Al that we can interpret more intelligently
than if we got only I with no idea of its accuracy or inaccuracy.

A Survey of Integration Schemes
Students are taught the fundamental theorem of calculus:

I'= f ffu)du=F(x)-F(y) provided d F(u) = f(u)
v du

This means that one could calculate I if one could dis-
cover somehow an expression F(u) whose derivative is
the given expression f(u). Students are taught integration
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as a process, applied to expressions, that starts with f and
ends with F. But in professional practice that process
hardly ever succeeds. A compact expression F(u) is al-
most always difficult or impossible to construct from any
given f(u). For instance, neither

_fjfexp[—uz."zldua'\""é; nor fﬂx exp(—u + x In u)du

possesses a closed form, that is, an expression involving only
finitely many elementary operations (+, —, X, +, In, exp, tan,
arctan, ...) upon the variable x. Nevertheless, both integrals
can be approximated arbitrarily accurately by aptly chosen
formulas. So often do statisticians and engineers need
values of those integrals that formulas for them, accurate
to ten significant decimal digits, can now be calculated in
a few seconds by pressing a key on certain handheld cal-
culators. (Press @ on the HP-32E to get the first integral,
the cumulative normal distribution; press x! on the HP-34C
to get the second integral, the gamma function I'(1+x),
whether x be an integer or not.)

Almost every rare integrand f(u) whose indefinite in-
tegral F(x) = fx f(u)du + c is expressible in a compact or
closed form can be recognized by a computer program that
accepts the string of characters that defines f and spews out
another string that represents F. (Such a program is part of
the MACSYMA system, developed at MIT, that runs on a
few large computers—two million bytes of memory—at
several universities and research labs.) Perhaps the terms
“‘compact” and “closed form” should not be attached to the
expression F(x), since usually, except for problems as-
signed to students by considerate teachers, the integral

LBL [ A

Begin with u in the X register

Save u in the stack

.. Vul(u=1)

Recall u again

.+« Yin{u)

Display v u/(u=1) = 1/lnu

Fig. 3. This program makes the HP-34C calculate the inte-
grand Vul(u—1) — 1/ln u when the argument u is in the X
registerand key Ais pressed. Labels B, 0, 1, 2, or 3would have
served as well as A.



A = % Area of Ribbon = fy' Af(u) du

-

”~

~

~
\\f(u)ut(u)
SN fu) ?

~ f(u) - Af(u)

Area! = [ f(u) du

T
u=y u=x

Fig.4. The graph of an uncertain integrand f(u) + Af(u) can run
anywhere in the ribbon bounded by the dashed lines. The area
under such a graph, | £Al, is uncertain by +Al, which is one-
half the area of the ribbon. The HP-34C displays its estimate of
I +Alinits X register and holds an estimate of Al in its Y register.

F(x) far exceeds the integrand f(u) in length and complex-
ity. Shown in Fig. 5 are two compact forms and one closed
form for F(x) when f{u)=1/{1+u%4). The extent to which F(x)
is here more complicated than f(u) is atypically modest out
of consideration for the typesetter. The formulas in Fig. 5
will remind many readers of hours spent on calculus prob-
lems, but they do not provide economical ways to calculate
F(x) for any but very big or very tiny values of x. When I use
the HP-34C’s f; key to calculate F(1)} = f(} du/(1+u%) =
0.989367 + 0.000004 the answer appears in 200 seconds
including 20 seconds taken to enter the f-program plus 180
seconds for a result (in SCI 5). Calculating F(1) from any
formula in Fig. 5 takes at least about ten times longer, not
including the time taken to deduce the formula. Engineers
and scientists have long been aware of the shortcomings of
integration in closed form and have turned to other
methods.

Perhaps the crudest way to evaluate f; f{u)du is to plot
the graph of f(u), like Fig. 1, on uniformly squared paper
and then count the squares that lie inside the desired
area. This method gives numerical integration its other
name: numerical quadrature. Another way, suitable for
chemists, is to plot the graph on paper of uniform density,
cut out the area in question, and weigh it. Engineers used
to measure plotted areas by means of integrating engines
called planimeters. These range from inexpensive hatchet
planimeters of low accuracy to Swiss-made museum
pieces costing hundreds of dollars and capable of three
significant decimals. (For more details see reference 1).
Nowadays we reckon that the computer will drive
the graph plotter so it might as well integrate too.

Today's numerical integration techniques are best ex-
plained in terms of averages like

A= li(x—y) = [ flu)du/(x—y)
which is called ‘‘the uniformly weighted average of f(u)
over the interval between xand y.”’ Anotherkind of average,
A= Ewif(ui) where w;>0 and Zwi=1.
j=1 j=1

is a finite weighted average of n samples f(u,), f(uy), ..., f(uy).

Provided the sample arguments uy, uy, ..., u,, called nodes,
all lie between x and y the sample average A will approxi-
mate, perhaps poorly, the desired average A, and hence
provide I = (x—y)A as an approximation to I = (x—y)A.
Statisticians might be tempted to sprinkle the nodes u; ran-
domly between x and y—that is what Monte Carlo methods
do. But randomness is a poor substitute for skill because
the error A—A tends to diminish like 1/V'n as the number
n of random samples is increased, whereas uniformly
spaced and weighted samples provide an error that dimin-
ishes like 1/n2. Other more artful methods do even better.
Different numerical integration methods differ princi-
pally in the ways they choose their weights w; and nodes u,,
but almost all have the following characteristics in com-
mon. Each average A is associated with a partition of the
range of integration into panels as shown in Fig. 6. Each
panel contains one node u; whose respective weight is

w; = (width of panel j)/((width of range of integration).

The formula given above for A amounts to approximating
the area in each panel under the graph of f(u) by the area of
a rectangle as wide as the panel and as high as the sample
f(u;). The simplest method is the midpoint rule, whose
nodes all lie in the middles of panels all of the same width.
Other methods, like the trapezoidal rule and Simpson’s
rule, vary the panel widths (weights) and nodes in ways
designed to exploit various presumed properties of the
integrand f(u) for higher accuracy. Which method is best?
If this question had a simple answer there would not be so
many methods nor would we need texts like ‘“Methods of
Numerical Integration’ by P.]. Davis and P. Rabinowitz,?
which contains 16 FORTRAN programs and three bib-
liographies with well over 1000 citations.

For example, consider Gaussian quadrature. This method
is widely regarded as “‘best” in the sense that it very often
requires fewer samples than most other methods to achieve
an average A that approximates the desired A to within
some preassigned tolerance. But the weights and nodes of
Gaussian quadrature take quite a while to calculate. Pro-
grams to do so, and the resulting tables of weights and nodes
for various sample counts n, have been published.*> Had
we chosen Gaussian quadrature for the f;‘ key we would

Fix) = f:f(u)du where f(u) = 1/(1+u®.

F(x) = XE (—x®*/ (6ak + 1) if x2<1
k=0

=T LA S _ B4k _ . 2
g2 050 (gg) sign )+ x X (—x"%)"/ 64k — 1) it x* =1
18 2x Sinfy 2
= — . — 1, .
3 21 singy - arctan ( o ) + Yacos8, - In <1 o -
2 coséy

k8 m
+(6—4 csc (gg) sign (x) if x2> 1) where 6 = (k—Y2)7/32

Fig. 5. Formal integration transforms many a simple expres-
sion f(u) into messy formulas F(x) of limited numerical utility .
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f, fluydu = (x-y) - > w,- f(u)
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_ | f(u)
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Wi 0.2 0.3 0.3 0.2

Fig. 6. The integral, regarded as an area, is here divided into
four panels each of whose areas is approximated by the area
of a rectangle as wide as the panel and as high as a sample.

have had to store at least as many nodes and weights as we
could expect to need for difficult integrals, amounting to
at least several hundred 13-digit numbers, in read-only
memory. But that would have left no space in the HP-34C
for anything else, so a different method had to be found.

The f; key could not use a method that generates just
one average A because that gives no indication of how
accurately it approximates A. Instead we looked only at
methods that sample repeatedly and with increasing
sample counts n; < n, < nj < ... to produce a sequence of
increasingly accurate averages A;, Aj;, Aj, ... . Provided
that sequence converges to A so fast that each |Ay;; — A]
is considerably smaller than its predecessor, the error
|Ax—A| can be approximated accurately enough by
|Ak—Ag+1}, and the last average Ay, can be accepted in
lieu of A as soon as |Ay—Aj 1| is tolerably small.

How small is “tolerably small’’? That depends upon the
area of the ribbon discussed above under ‘“Tolerance and
Uncertainty.” Since the integral I = f;,‘ f(u)du inherits an
uncertainty Al = | [ ;,‘ Af(u)du| from the uncertainty Af(u)
in the integrand, so does A = I/(x—y) inherit an uncertainty
AA = Al/|x—y|, which may be approximated by

n
AA = ) wAf(u)

i=1
in the same way as A is approximated by A. Indeed, A and
AA can be computed together since they use identical
weights and nodes. And so the sequence A;, A,, Aj, ... is
accompanied by a sequence of respective uncertainty esti-
mates AA;, AA,, AAj, ... . Now “tolerably small” can be
defined to mean “rather smaller than AA,,.”

The foregoing argument provides an excuse for accept-
ing Ay, in lieu of A whenever two consecutive estimates
Ay and Ay, agree to within AAy,,, but it provides no
defense against the possibility that convergence is not so
fast, in which case Ay and Ay ,; might agree by accident
and yet be both quite different from A. The f; key waits for
three consecutive estimates Ay, Ay,;, and Ay, to agree
within AA,,. Only the most conservative integration
schemes wait that long. While this conservatism strongly
attenuates the risk of accidental premature acceptance of
an estimate, the risk that three consecutive estimates might
agree within the tolerance and yet be quite wrong cannot
be eliminated. Later, under ““How to Deceive Every Nu-

26 HEWLETT-PACKARD JOURNAL AUGUST 1980

merical Integration Procedure,” some such risk will be
proved unavoidable, but the risk now is so small that
further attenuation is not worth its cost.

The combination of ignorance with conservatism is
surprisingly costly. Had we known in advance that Ay
would be accurate enough we would have calculated none
of the other averages. Instead, waiting for three consecu-
tive averages to agree could easily cost some methods al-
most 6.25 times as many samples as if only Ay had to be
calculated, and more than that if the sample counts n,,
Ny, Ny, ... are not chosen optimally. For the f; key we chose
ni = 2" —1 and we chose a method whose successive aver-
ages each share almost half of the previous average’s
samples, thereby preventing the cost of ignorance from
much exceeding a factor of 4.

Memory limitations precluded the use of another family
of methods known as adaptive quadrature. These methods
attempt to distribute nodes more densely where the inte-
grand f(u) appears to fluctuate rapidly, less densely else-
where where f(u) appears to be nearly constant or relatively
negligible. They succeed often enough that the best
general-purpose integrators on large computers are adap-
tive programs like Carl de Boor’'s CADRE; this and others
are described in reference 2. Alas, adaptive programs con-
sume rather more memory for scratch space than the
twenty registers available in the HP-34C.

What Method Underlies the [, Key?

The HP-34C uses a Romberg method; for details consult
reference 2. Several refinements were found necessary. In-
stead of uniformly spaced nodes, which can induce a kind
of resonance or aliasing that produces misleading results
when the integrand is periodic, the f; key’s nodes are
spaced nonuniformly. Their spacing can be explained by
substituting, say,

into

! Yo3. 1.3y 3 2
I= Lf(u)du- f_lf[iv—iv ) -5 (1=v')dv
and distributing nodes uniformly in the second integral.
Besides suppressing resonance, the substitution confers
two more benefits. One is that no sample need be drawn
from either end of the interval of integration, except when
the interval is so narrow that no other possibilities are
available, and consequently an integral like

3 .
f sin u du
0 u

won’t hang up on division by zero at an endpoint. Second,
I = f;,‘ f(u)du can be calculated efficiently when
f(u) = g(u)V|x—u| or g(u)V(x—u){(u—-y) where g(u) is
everywhere a smooth function, without any of the expedients
that would otherwise be required to cope with the infinite
values taken by the derivative f'(u) at u = x oru = y. Such
integrals are encountered often during calculations of areas
enclosed by smooth closed curves. For example, the area of
a circle of radius 1 is



¥ Vu@@=u)du = 3.14159 + 8.8x10™°

which consumes only 60 seconds when evaluated in SCI 5
and only 110 seconds to get 3.141592654+1.4x107°
in SCiI 9,

Another refinement is the use of extended precision,
13 significant decimal digits, to accumulate the sums that
define Ay, thereby allowing thousands of samples to be
accumulated, if necessary, without losing to roundoff any
more information than is lost within the user’s own f-pro-
gram. The last example’s 10 significant decimal digits of
7 could not have been achieved without such a refinement.

How Does the [y Key Compare with Other Integrators?

What most distinguishes the HP-34C’s [} key from all
other schemes is its ease of use. No step-size parameters, no
plethora of error tolerances, no warning indicators that
“can usually be ignored.” Only the minimum informa-
tion needed to specify f;,‘ {f(u)=Af(u))du has to be supplied.
And because the f ; key is effective over so wide a range of
integrals it ranks among the most reliable procedures avail-
able anywhere. Usually it is far faster than simpler proce-
dures like the trapezoidal rule or Simpson’s rule com-
monly used previously on calculators. For integrands de-
fined by programs that fit comfortably into a mid-sized
handheld calculator that can hold at most 210 program
steps, the [y key is comparable in speed (count the number
of samples) with the integrators available on large com-
puters. For much more complicated integrands the best
adaptive integrators on large computers are appreciably
faster.

One of the HP-34C’s most important components is its

Evaiuation in RUN Mode

Integrand in PRGM Mode

Laux

Owner’s Handbook. It is for most owners the first guide to
the foothills of an awesome range of new possibilities. Two
chapters are devoted to | ; The first is introductory, and
allows the user to evaluate simple integrals effortlessly
and confidently. The second chapter is a longer explana-
tion of the power and the pitfalls, concerned mainly with
numerical integration generally rather than with the
HP-34C in particular. This chapter had to be included be-
cause its explanations and practical advice are not yet to be
found in any text likely to be consulted by an owner, nor
are they supplied by the instructions that accompany other
integrators on other computers or calculators. This second
chapter is part of the educational burden that must be
borne by innovators and pioneers. The Owner’s Handbook
provides no formulas for the nodes and weights used by
the HP-34C because they are not needed to understand
how the |, ; key works; instead they can be deduced from
information in this article.

Every numerical integrator like f ; , which executes a
user-supplied program to get the integrand’s value f(u),
imposes constraints upon that program. Some constraints,
like requiring f to have a smooth graph on the interval of
integration, are practically unavoidable. Others are nui-
sances like
= Begin the f-program with a special label, say A’
= Do not use certain memory registers, say #0 - #5.
= Do not use certain operations, say = and CLR.

The | ;‘ key is encumbered with no such nuisances. The
f-program may begin with any of several labels, so several
different integrals can be calculated during one long com-
putation. The f-program may use memory registers freely
and may use any operation key except f; itself. One of

Equation in PRGM Mode

e

CLEAR REG x 2 | ..save u ..getu
n soLve | 6 R x i
ENTER? ..save v, getu LST x
1 | 1
f' u ﬂ .. uw
y
Wait for answer /
to be displayed
.. 1+uve

k)
~
z

Fig. 71 A program to evaluate
I = [o uduivu) where v = wu)

- vmu+in( +uve?) satisfies v—u+Iin (1 +uveY)=0.
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those keys is the HP-34C’s powerful SOLVE key.* Conse-
quently this calculator is currently the only one that can
evaluate conveniently integrals of implicit functions.

For example, let v = v(u) be the root of the equation

v —u + In(1 + uve') = 0.
Then
J, u duv(u) = 1.81300 + 0.000005

results from a program rather shorter than on any previous
calculator; it is exhibited in Fig. 7.

Furthermore, f ; may be invoked, like any other function,
from within a program, thereby permitting the HP-34C to
SOLVE equations involving integrals. For example,
solving

fg cos (x sin 6)dé = 0

for x = 2.405... takes a short program contained in the
Owner’s Handbook, and exhibits the first zero of the Bessel
function Jg(x).

How to Deceive Every Numerical Integration Procedure

Such a procedure must be a computer program—call it
P—that accepts as data two numerical values x and y and
a program that calculates f(u) for any given value u, and
from that data P must estimate I = [} f(u) du. The integra-
tion procedure P is not allowed to read and understand
the f-program but merely to execute it finitely often,
as often as P likes, with any arguments u that P chooses.
What follows is a scheme to deceive P.

First ask P to estimate I for any two different values x and
y and for f(u)=0. Record the distinct arguments uy, ug, ..., u,
at which P evaluates f(u). Presumably when P finds that
f(uqy) = f(uy) = ... = fluy) = 0 it will decide thatI = 0 and
say so. Next give P a new task with the same limits x and y
as before but with a different integrand

f(u) = ({u—u1)-(u—uz)-...-(u—un))%

Once again P will calculate f(uy), f(uy), ..., and finding no
difference between the new f and the old, P will repeat
exactly what it did before. But the new integral I is quite
different from the old, so P must be deceived.

The HP-34C’s J'; key can be hoodwinked that way. Try
to evaluateffllzzg f(u)du using first flu) = 0 programmed
in a way that pauses (use the PSE key) to display its argu-
ment u. The calculator will display each sample argument
it uses, namely 0, 88, =47 and *117. Next program

f(u) = [u[u—88}(u+88)(u—47](u+47)(u—117)[u+117]]2

and evaluate jf}§§ f(u)du again. The calculator will say
that both integrals are 0, but the second polynomial’s
integral is really 1.310269 x 10%®. That polynomial’s graph,
shown in Fig. 8, has the sharp spikes that characterize
integrands troublesome for every numerical integration
procedure. To calculate the integral correctly, reevaluate
itas 2 fgza f(u)}du, thereby doubling the spikes’ width com-
pared with the range of integration.
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The threat of deceit impales the designer of a numerical
integrator upon the horns of a dilemma. We all want our inte-
grators to work fast, especially when the integrand f(u)
is very smooth and simple like f{u)=3u—4. But if the inte-
grator is too fast it must be easy to deceive; fast integration
means few samples f(u;), implying wide gaps between some
samples, which leave room for deceitful misbehavior.
Figs. 9a-9e illustrate the dilemma with two estimates of
f;,‘ f(u)du. The first estimate is based upon the three sam-
ples drawn at the white dots, the second upon seven sam-
ples including those three white plus four more black dots.
Fig. 9a shows why all sufficiently smooth graphs f(u) that
agree at all seven samples have nearly the same integrals,
but Fig. 9b shows how two integrands could provide the
same samples and yet very different integrals. The coinci-
dence in Fig. 9b is unlikely; successive estimates based
upon increasingly dense sampling normally would reveal
the difference as in Fig. 9c. However, situations like those
illustrated in Figs. 9d and 9e are very likely to deceive.

Textbooks tell us how to avoid being deceived: avoid
integrands f(u) among whose first several derivatives are
some that take wildly different values at different places
in the range of integration. Or avoid integrands f(u) that
take wildly different values when evaluated at complex
arguments in some neighborhood of the range of integra-
tion. And if wild integrands cannot be avoided they must
be tamed. We shall rejoin this train of thought later.

Improper and Nearly Improper Integrals

An improper integral is one that involves = in at least
one of the following ways:
s One or both limits of integration are *x, e.g.,

1.8
x
10271
1027
[ 1
[ I
f(u) =(u(u?—47%) (u2-88%) (U?-1172)?
1026 +
1 1 T T
—-128 -88 0 a7 117 128

Fig. 8. The polynomial f(u) was devised to deceive the
HP-34C into miscalculating its integral as 0 instead of
1.31x 1028 This spiky graph is typical of integrands that can
baffle any numerical integrator. 73% of the area under the
graph lies under two spikes whose widths span less than 4% of
the area of integration.
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Fig.9. Few samples (open circles) mean fastintegration but a
large possibility of error. More samples (solid dots plus open
circles) usually mean more accuracy, but not always, as in (b),
(d), and (e). (a) Which is the graph of f(u)? No matter; both
have almost the same integral. (b) Which is the graph of f(u)?
They have very different integrals. (c) Here two graphs that
coincide on the first samples O are distinguished by a signifi-
cantly different outcome after second samples @ are drawn. (d)
Ifthe graph of f(u) has a few sharp and narrow spikes, they will
probably be overlooked during the estimation of the integral
based on finitely many samples. (e) If the graph of f(u) has a
step that was not made known during the estimation of the
integral, then the estimate may be mistaken.

J:exp (—uz) du = Vri2.

s The integrand tends to *x someplace in the range of
integration, e.g.,

f; In(u)du = 1.

s The integrand oscillates infinitely rapidly somewhere in
the range of integration, e.g., f& cos (In u)du = 4.
Improper integrals are obviously troublesome. Equally
troublesome, and therefore entitled to be called nearly
improper, are integrals afflicted with the following malady:
» The integrand or its first derivative changes wildly with-
in a relatively narrow subinterval of the range of integra-
tion, or oscillates frequently across that range.
This affliction can be diagnosed in many different ways.
Sometimes a small change in an endpoint can render the
integral improper, as in

£ ogor Inw)du = 0.99898 ... - [ In(u)du = 1.

Sometimes a small alteration of the integrand can render
the integral improper, as in

[T dxitx® + 107"%) = 314157.2654... - [! dxix® = =,

Sometimes the value of the integral is nearly independent
of relatively huge variations in one or both of the end-
points, as is f:; exp (—u?) du = Va/2 for all x > 10. Regard-
less of the cause or diagnosis, nearly improper integrals
are the bane of numerical integration programs, as we
have seen.

During the HP-34C’s design a suspicion arose that most
integrals encountered in practice might be improper or
nearly so. Precautions were taken. Now that experience
has confirmed the suspicion, we are grateful for those pre-
cautions. They were:

1. Avoid sampling the integrand at the ends of the range of
integration.

2. By precept and example in the Owner’s Handbook,
warn users against wild integrands, suggest how to recog-
nize them, and illustrate how to tame them.

The second precaution ignited controversy. Against it on
one side stood fears that its warnings were excessive and
might induce paranoia among potential customers. Who
would buy a calculator that he thinks gets wrong answers?
Actually wrong answers were very rare, thanks in part to
the first precaution, and many attempts to vindicate dire
predictions about mischievous improper and nearly im-
proper integrals were thwarted by unexpectedly correct
answers like

J, In (u) du = 0.9998 = 0.00021

in 2 minutes at SCI 3. Or

30
/, exp(—u?) du = 0.886227 + 0.0000008

in 4 minutes at SCI 5. If the wages of sin be death, O Death,
where is thy sting?

On the other side stood a number of embarrassing ex-
amples like
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J.:)oo exp(—u?) du
miscalculated as 0.0 * 0.0000000005 in 14 seconds.
Another, had we known it then, would have been Wood-
yard’s example at the beginning of this article; the correct
answer

1
f (M4 _ 1) gy =0.03649 + 0.00000007
o "u-1 Inu

in 23 minutes at FIX 7 differs from FIX 5’s wrong answer
0.03662 in the worst way; the error is too small to be ob-
vious and too large to ignore. Adding to the confusion
were examples like

A(x) = x7! f; V' -2 In cos(u?) duiu? = 1 + x*60 + x%480 + ...

for which computation in SCI 4 produced ridiculous values
like A(0.1) = 0.95742 + 0.00005, A(0.01) = 0.58401 =*
0.00003, and A(0.001) = 0, all impossibly smaller than 1.
This example appears to condemn the f; key until the
integrand f(u)=V -2 In cos(u?)/u? is watched for small
arguments u and seen to lose most of its figures to round-
off, losing all of them for 1u1=<0.003, despite an absence of
subtractions that could be blamed for cancellation. Then
the example appears to condemn the whole calculator. Who
wants responsibility for a calculator that gets wrong
answers?

Don’t panic! The answers are wrong but the calculator
is right.

How to Tame a Wild Integral

Forewarned is forearmed. Every experienced calculator
user expects to encounter pathological examples like some
of those above, and expects to cope with them. The ques-
tion is not “‘whether” but “when’’? And that is when atten-
tion to detail by the calculator’s designers is rewarded by
the user’s freedom from petty distractions that can only
complicate a task already complicated enough. But like
the dog that did not bark,* the absence of distracting de-
tails may fail to be appreciated. That is why the examples
explained below have been chosen—to illustrate the ad-
vantages of liberated thought. Work them on your calcula-
tor as you read them; don’t skim them like a novel. Then
you may come to think of your calculator the way I think
of mine, as a trusted friend who stays with me when I
need help.

The integral A(x) above contains an integrand f(u) =
V' —2 In cos(u2)u? that loses its figures when u becomes
tiny. The problem is caused by rounding cos(u?) to 1,
which loses sight of how small u? must have been. The
solution compensates for roundoff by calculating f(u)
as follows:

Let y = cos u? rounded.
If y = 1 then let ffu) = 1
else let flu) = V —2 ln y/cos™'y.

The test for y = 1 adds four steps to the f-program and,
provided In and cos ™! are implemented as accurately as
on all recent HP calculators, the problem goes away.

*See the last few paragraphs of the Sherlock Holmes story “Siiver Blaze” by Conan Doyte
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012+

v ul(u—1) = 1/in(u)

0.06
0 u
@ 0
0.1
2w2i((w—1)(w+1)) — wi/in(w)
0.05 +
0 T { } } % w
(b) (] 0.2 0.5 0.8 1
0.1 T
2w2/(w2-1) — w/in(w)
0.05 1
Y T t f f w
(© 0 0.2 0.5 0.8 1

Fig. 10. Substituting w2 for u turns the wild graph (a) into the
easy one (b). But do not replace ((w—1) (w+1)) by (w?—1)
because roundoff errors introduce a spike, as shown in (c).

Woodyard's example I, has an integrand f(u) whose de-
rative f'{u) —e as u — 0. The graph of f(u) shown in Fig. 10a
looks like a lovers’ leap. Stretching the u-axis near u=0 by
substituting u = w? turns the precipice into the hummock
shown in Fig. 10b and transforms the integral into an easy
calculation:

I =J'1[ __2w? W gy
! o * (w—1)(w+1) Ilnw

The HP-34C computes this as 0.03649 + 0.000005 in 100
seconds at FIX 5 or 0.0364900 + 0.00000008 in 200 seconds



at FIX 7. Do not replace (w—1)(w+1) by (w?—1) because
the latter loses to roundoff half of its significant digits as
w — 1 and introduces a gratuitous spike into the integrand’s
graph shown in Fig. 10c, which was plotted on an HP-85. Do
not worry about w = 0 or w = 1 because they don’t happen,
but do worry that as w — 1 the integrand approaches the un-
reliable expression * — = = 0. This means that FIX 7 dis-
plays about as many digits as could possibly be correct for
all w < 0.999, beyond which the f; key draws few if any
samples because it converges so fast.

The graphs of exp(—uzj over 0 < u < 300 and of
1/(u® + 107 *% over —1 < u < 1 both resemble huddled mice
with very long tails stretched out hundreds or thousands of
times as long as their bodies. Plotting the graphs on a page
of normal width is futile because the bodies get squashed
into vertical whiskers.

Most people who integrate such functions numerically
cut off the tails. Thin tails can be cut almost indiscrimi-
nately without much degrading the accuracy or the speed of
integration. Such is the case for on exp (—u?)du, which f
evaluates in less than, say, 4 minutes at SCl 5 provided that
x, if bigger than 4 or 10, is cut back to something between 4
and 10. But [ dw/(u? + 10719) has too thick a tail to cut
without losing accuracy or patience when x is large. That
is why Procrustean methods are not recommended. Better
to shrink the tail via an artful substitution like u = A + utan v
where A lies within the body of the mouse and w is roughly
that body’s width. Doing so with A = 0 and u = 1 changes
Jo exp(—u?) du into
farctan X

o exp(—tan?v) (1 + tan?v) dv

which [ evaluates in three minutes at SCI § even when
x is as big as 10!°, Don't worry about tan 7/2 because it can’t
happen on a well-designed calculator.

ffxdu/(uz + 10719

benefits miraculously from the foregoing substitution
when A = 0 and p = 1073, but values near those do almost
as well.

Another technique might be called ““subdivide and con-
quer.” It subdivides the range of integration into subinter-
vals upon each of which the integrand f(u) is tame, al-
though f(u) may look wild on the range as a whole. For
example, f(u) = V u2 + 10-10 has a V-shaped graph prac-
tically the same as that of |lul. Evaluating f5 f(u) du
accurately takes a long time if done with one press of
fy, but subdividing the integral into

J2fu) du + [ f(u)du

takes two presses off; and one of £+ but much less time.

Subdivide and conquer works best when combined with
apt substitutions. For example, if the formulas in Fig. 5
were unavailable how would F(=) = [ du/(1 + u®) be
calculated?

F(x) = 0‘ du/(1 + ub) + f: du/(1 + u®) .. subdivided

= du/(1 + ub) + ! whdwi(w® + 1) ... u=1/w
0 0

=f(: (1 + u%) dw/(1 + u®) ... merged viaw=u

=1+ fol (u®2-u%) du/(1 + u®) .. some algebra

... u=v" to shrink

=1+Y% fol (1—v%) ¥°58 du/(1 + P)
a tail

= 1.000401708155 + 1.2x10~ 12

in 10 minutes at SCI 8. Thus we have calculated F(x) =
(m/64)csc(m/64) to 13 significant decimals on a ten-sig-
nificant-decimal calculator.

Oscillatory integrals like f ; cos(In u) du sometimes suc-
cumb to stretching substitutions like u = v? that damp the
oscillations, but generally oscillatory integrals cannot be
calculated accurately and quickly without sophisticated
tricks beyond the scope of an article like this. A simple
trick worth trying when the period of oscillation is known
in advance is called folding, though it is really another
instance of subdivide and conquer. Here is a didactic
example.

6007 )
I; = f —SU_ gy = still running after over three
o Vu+Vutn hours at sc1 s

sin%u

- 1120'[1:”+" \/_+\/UT

599 X
sinZy
Vv+nm + Vv+nr+n

dv

after being subdivided and with u = v + n#. Exchanging
f and Y produces

- 599 X
I; = f sin® - E dv
3 .
0 aco Vv+nm + Vv+nm+nw

At this point a program should be written to calculate

the sum, but because the example is didactic the sum
collapses to yield

m
600 sin?v
L= ———————— = 21.10204 = 0.00007
\/_ + \/v+6001r

in 5 minutes at SCI 5.
Now for a final example drawn from life:

J‘ du
o (a2+u) V(aZ+u) (b%+u) (c?+u)

V= fora=100,b=2,c=1.

This integral pertains to the electrostatic field about an
ellipsoidal body with principal semiaxes a, b, c¢.5 The
ellipsoid is needle-shaped like an antenna or a probe. The
classical approach transforms V into a standard form called
an elliptic integral of the second kind and interpolates on
two variables in published tables to get a numerical value.
The following approach takes less time.

First transform the improper integral ( f o) into a proper
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one hy substituting, say, u = (a2—c?)/(1—v?) — a? to get

V= J\f: 1-v9)(vi+ a) dv
where
A = 2/((a®~c*) V'a’ -b%) = 2.00060018 x 10"

n=cla=00m

a = (b—c’)(a’—b?) = 3.001200480 x 10}

Now, as always happens when a >> b > ¢, the integral
is nearly improper because a and u are both so nearly 0. We
suppress this near impropriety by finding an integral in
closed form that sufficiently resembles the troublesome
part of V. One candidate is

1 1
W= fp dvVvi+a = A 1n (v+ Vi +a) | -
= xln (1+ VIta)(p+Viita)

= 8.40181880708% 10 ®

Then
V=W [ (VIS +a) - 1V +a) dv

1
Wik v?
=A —_— — - dv
J; [l—y. 1+ V1—v¥) V* + a]
= 7.78867525%x107% + 1.3x10° 14

after seven minutes at FIX 8. Don't worry about V1-v*
as v — 1 because the figures lost to roundoff are not needed
and its infinite derivative doesn’t bother the HP-34C.

Conclusion

A powerful mathematical idea has been placed at the
disposal of people who will invoke it with fair confi-
dence by pressing a button marked [y without having to
understand any more about its internal workings than
most motorists understand about automatic transmissions.
Integrals that might previously have challenged the
numerical expert and a big computer now merely amuse
the scientist or engineer, and tomorrow they will be rou-
tine. And now those engineering students who do attend
classes in numerical analysis need no longer be expected
to memarize the names nor the remainder terms of quadra-

ture formulas but may instead be taught to use integra-
tion wisely.
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