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Compact Digital Cassette Drive for
Low-Cost Mass Storage

This portable battery-operated unit uses minicassettes to
Store programs and data inexpensively for HP-IL systems.

by William A. Buskirk, Charles W. Gilson, and David J. Shelley

HE HP 82161A Digital Cassette Drive (Fig. 1) is a

portable, programmable, mass storage peripheral

for the Hewlett-Packard Interface Loop (HP-IL).! The
storage medium is a removable minicassette that can store
up to 128K bytes of information. Portability is achieved by
the use of a four-cell nickel-cadmium battery pack, re-
charger, and power supply system similar to that used in
other portable HP products. The 82161A is styled to fit in a
family of compact peripheral devices such as the 82143A
and 82162A Printer/Plotters, and to fit nicely in a system
controlled by an HP-41 Handheld Computer or an HP-75
Portable Computer. The 82161A makes use of much of the
package design of the 82143A Printer/Plotter,? producing a
unit 178 mm wide by 133 mm deep by 57 mm high. Replac-
ing the 82143A’s printer mechanism on the top right side is
a transport mechanism with a REWIND key and a door OPEN
key located in front. To the left of these keys is the power
switch and indicators POWER, LOW BATTERY, and BUSY.
The top left side of the package offers a compartment to
store two minicassettes. The two HP-IL cables and the re-

charger cable are connected to the 82161A via plug recepta-
cles on its back panel.

Electronic System

Fig. 2 is a block diagram of the electronic system of the
82161A. An internal microcomputer controls the head and
motor drive electronics for the transport assembly and in-
teracts with the HP-IL interface logic and data buffers.

The criteria for microcomputer selection for the 82161A
included low cost, ready availability, low power consump-
tion, and adequate I/O. To limit the number of electrical
parts in the 82161A, a microcomputer that also contained
ROM, RAM, and a timer, and could generate the encoded bit
timing during a write operation was needed. A 3870 mi-
crocomputer with 2K bytes of ROM and 64 bytes of RAM
was selected.

The logical interface of the 82161A is a generalized mass
storage driver that provides the capability to execute opera-
tions such as initializing the tape, seeking a record, reading
or writing a record, and rewinding the tape (see Table I).

Fig. 1. The HP B2161A Digital
Cassette Drive is a compact
battery-operated mass-storage
unit designed for use in portable
HP-IL systems.
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Table |

HP 82161A Digital Cassette Drive Commands
DDLoO  Write buffer 0 DDTo  Read buffer 0
DDL1  Write buffer 1 DDT1  Read buffer 2
DDLz  Write DDT2 Read
DDL3  Set byte pointer ~ DDT3  Read address
DDL4  Seek DDT4 Exchange buffers
DDL5  Format DDTs  Transfer buffer 0—1

DDL6  Partial write

DDL7 Rewind

DDL8  Close record

DDL9  Transfer buffer 0—1
DDL10  Exchange buffers

Buffer space for two 256-byte records of data is provided.
Buffer 0 is used for data transfers between the HP-IL and the
minicassette tape, and buffer 1 can be used by the HP-IL
controller as virtual memory. The intent is to provide space
to store a page of the tape directory and thereby reduce the
number of seeks to the directory at the beginning of the tape.
The DDL3 (set byte pointer), DDLA (close record), and DDL6
(partial write) commands allow a memory-limited control-
lersuch as the HP-41 Handheld Computer to modify parts of
a record without having ta buffer the entire record in its
mainframe. The record is read into buffer 0, modified, and
written back to the tape with only the modification informa-
tion passing around the HP-IL.

The ability to use the 82161A for extended remote data
gathering tasks has been enhanced by the addition of the
power-up/down commands. When the power switch on the
front-panel keyboard is in the STANDBY position and a
loop-power-down (PWRDN) command is received, the
drive’s power supply is turned off. When the HP-IL control-
ler requires the loop to be active again, it sends a string of
identify message frames, which turns the drive’s power
supply back on.

Software
The 2K bytes of machine code in the ROM of the mi-
crocomputer can be divided into three major areas: the

power-on idle routine, the HP-IL routine, and the device
control routines. The power-on idle routine, which uses
approximately 160 bytes of code, sets up the initial state of
the 82161A at power on and then alternates between testing
for a cassette to be inserted into the drive, the REWIND key to
be pressed, and calling the HP-IL routine. This routine also
executes the device-clear and power-down functions. If
either command is received, the HP-IL routine flags that fact
and the drive responds after it finishes its latest task and
returns to the idle routine loop.

The HP-IL routine, which takes approximately 460 bytes,
provides the 82161A with basic talker and listener
capabilities. This routine takes care of all communication
with the HP-IL interface chip and passes all necessary in-
formation to the device control routines, primarily through
a set of flag registers and one data register. This polled
solution to HP-IL, in contrast to an interrupt-driven solu-
tion, is required because most of the device control routines
need exclusive use of the microcomputer and can only give
up control at specific times.

The device control routines, which take the remaining
1420 bytes of ROM, can be further divided. One part is the
command decode portion. The device control is done with
device-dependent commands (DDCs). When the HP-IL
routine receives a DDC that it decides is of interest to the
82161A, it passes the DDC on to the command decode
routine. Either the command is executed immediately, as in
the case of a read or exchange buffer operation, or flags are
set to control future actions, such as write and set byte
pointer where the flags control where data bytes are put. A
one-byte command buffer is used to hold a DDC received
when the drive is busy. The HP-IL ready-for-command
(RFC) message frame following this command is not re-
transmitted until the present task has been completed and
the new command has been decoded.

The DDL5 (format) command initializes the record posi-
tions on the tape by recording all 512 records on both tracks.
Each record contains a sync byte, a byte for the record
number, a second sync byte, 256 bytes of data (each data
byte initialized to 255), a checksum, and a final sync byte.
Only during initialization is the first sync byte and the
record number written. In all following write operations,
the record number is read before the remaining part of the

-
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Fig. 2. Block diagram of elec-

L | tronic system of the 82161A Digital
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Fig. 3. Timing diagram for signal lines and one-shot multivi-
brator states used to decode bit values stored on the 82161A
tape cassette.

record is written. This serves two purposes. The first is to
verify that the properrecord is being written and the second
is to fix the record position on the tape so that it does not
move along the tape when it is overwritten.

The major criterion in selecting an encoding method for
the 82161A was reliability. The tape drive system requires
that the method have a large speed-variation tolerance and
use a microcomputer to generate the encoded bit stream
during a write operation. The tape lengths required to re-
cord a one and a zero should be the same so that the length
of a record does not depend on the ratio of ones to zeros
within the record. Also, the code should be self-clocking for
easy decoding.

The method best qualified is the biphase-level or Man-
chester code. The rules of this code are 1) there is always a
transition in a bit cell center, and its direction specifies the
value of the bit, and 2) there is a transition on a bit cell edge
only when the two bits on either side have the same value
(see Fig. 3).

In a write operation, the time between transitions, bit cell
midpoint to bit cell edge, is 64 us. During this time the
transport status (stall, cassette present, and end of tape) is
checked, the next nibble is read from the buffer and added
to the checksum, and the next transition is calculated. The
bit stream generated is sent to the sense amplifier on the DIO
line.

There are two signals used in a read operation, DIN (data
in) and DRDY (data ready). DRDY is the extracted clock and
DIN is the latched data derived from the signal read from the
tape. The microcomputer reads DIN and DRDY simulta-
neously and checks for DRDY to change state. When it does,
the value of DIN is shifted into the register building the data.
While it is in the read loop, the microcomputer also checks
the transport status, stores the complete nibbles in the buf-
fer, adds them to the checksum, and maintains a counter to
detect when signal dropouts occur.

When the read/write routine is entered, the motors are
turned on, the record number is read and verified, and the
data portion of the record is then read or written. If a record
number error and/or (in the case of a read) a checksum error
is detected, the drive attempts the read or write operation a
second time. If the microcomputer still detects an error, it
stops the drive and reports the error to the HP-IL controller.

Seek operations are always attempted in a relative man-
ner first. When the new record number is received, it is
checked to seeifitisinrange (i.e., <512}, and the difference
between the present position and the desired position is
calculated. The transport is turned on to move in the ap-
propriate direction, and by watching the DRDY line, the
microcomputer counts interrecord gaps until the transport
reaches the record immediately before the desired record.
Thisrecord isread, and the record number is checked. If it is
correct, the transport is stopped with the desired record
next. If an error is detected, the tape is rewound, and the
seek is attempted again, but this time from the beginning of
the tape. This gives four chances of reading the record
correctly and ensures accurate seeks.

Data Storage and Retrieval

The microcomputer handles digital information to and
from the read/write electronics on a bit-by-bit basis using
three data-related lines (DIN, DIO, and DRDY, see Fig. 3)
and two control lines (REC and TRK). DIO is a bidirectional
data line whose transfer direction is controlled by the state
of the REC line. In the read mode (REC low), DIO is driven by
the sense amplifier, while in the write mode (REC high}, the
sense amplifier goes into a high-impedance state and DIO is
driven directly by the microcomputer. Both DIN and DRDY
are generated by the decoder circuitry and are derived
solely from DIO level changes. The TRK line is driven by the
microcomputer to select which tape track (0 or 1) is read
from or written to.

The sense amplifier is a custom bipolar integrated circuit.
It contains the signal conditioning and logic circuits to
drive the magnetic head during a write operation and to
translate the low-level analog signals at the head to time-
related digital signals at DIO during a read operation.

Writing to the tape is accomplished by controlling the
current flowing through the windings of the magnetic head.
These currents produce a magnetic field across the gap at
the front of the head. Three wires (two ends and a center tap)
are attached to each winding (track) on the head. During a
write operation, the center tap is connected to a constant-
current sink, and each end of the winding is alternately
driven high to control the direction of the current and thus
the polarity of the magnetic field at the gap. The use of a
current sink allows maximum rate of change of current, yet
limits the peak direct current to 150% of that required to
completely magnetize the tape.

During a read operation, the voltage at the terminals of
the head is proportional to the rate of change of the magnet-
ic flux across its gap and reaches a peak value when the gap
is directly opposite a flux reversal on the tape. To decode
recorded information properly, a digital signal with level
changes corresponding in time to these voltage peaks must
be generated. The sense amplifier generates this signal by
amplifying and then differentiating the analog signal from
the head. A zero crossing at the output of the differentiator
corresponds to a peak of the amplified signal and is used to
clock DIO level changes. The DIO level (high or low) is
related to the polarity of the amplified signal at clock time
and indicates the direction of the flux transition, Hysteresis
is included to provide protection from unwanted transi-
tions caused by electrical noise.
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Data content is encoded by the direction of the DIO level
transition at the midpoint of a bit cell. Transitions at bit cell
edges are used only as required to set up DIO for the proper
change at the next midpoint (see Fig. 3). The decoder
hardware ignores these edge transitions and provides the
microcomputer with two signals—DRDY and DIN. A change
at DRDY notifies the microcomputer that the signal at DIN
represents valid data.

For every DIO transition a 100-ns pulse is generated and
appears at the trigger input of a nonretriggerable one-shot
multivibrator. The timing period of the one-shot multivi-
brator is set so that, if triggered by a midcell transition, the
next edge transition, when it exists, will occur during the
cycle and thus be ignored. When the timing cycle expires,
the level of DIO, which corresponds to the encoded bit
value, is latched into the DIN flip-flop. Approximately 2 us
later, the output of the DRDY flip-flop changes, notifying the
microcomputer that data is valid (see Fig. 3).

To ensure that the one-shot multivibrator is triggered
only by midcell transitions and that it ignores any cell edge
transitions, a sync byte is included at the beginning of each
record. This special bit pattern maps to a stream of level
changes that includes only midcell transitions. Thus, the
one-shot multivibrator is set up to be triggered only at mid-
cell, and, if speed stays within allowable limits, synchro-
nization is maintained throughout the entire record.

The encoder hardware can tolerate timing variations in
DIO of +30%. Electronic jitter, aliasing, phase shift in the
amplifiers, external electromagnetic noise, and true speed
variations all contribute to the total timing variance at DIO.
Fortunately, the wide acceptability range of the decoder
easily overcomes these factors and ensures good unit-to-
unit compatibility.

Transport Mechanism

The 82161A’s mechanical design usesan 8 X 34 X 56 mm
minicassette designed especially for digital applications.
The cassette contains nominally 24 meters of usable tape
3.81 mm wide, allowing two tracks of data 1.45 mm wide.
This tape is hub-driven as opposed to capstan-driven,
meaning that the only way the tape can be moved is by
turning the appropriate stack of tape directly.

The selection of a hub-driven cassette was the key step in
a ‘“‘simplicity”’ approach to the design of the 82161A
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mechanism. It allows the use of a two-motor drive (one per
hub) and eliminates additional motors or controlled ac-
tuator devices that would be required by capstan
mechanisms or single-motor drives. Another key to
simplicity is the use of a two-track magnetic head. This
eliminates having to move the cassette, either by the user or
by a mechanism, to access both tracks. Other factors con-
tributing to a straightforward design are the extensive use of
injection-molded thermoplastics, cost-effective fasteners
such as adhesives and press fits, and a low part count.
Aside from simplicity, another goal of this mechanism
design was modularity. This produced a drive system mod-
ule that can be removed from the 82161A and designed into
other products with a minimum of change, electrical or

mechanical.
The primary part of this device is the headframe assembly

(Fig. 4). This assembly consists of a molded plastic frame
into which a magnetic head is aligned and glued, and an
optoelectronic device which forms half of the beginning-
of-tape/end-of-tape (BOT/EOT) sensor. The single-gap, two-
track head’s coil winding parameters were chosen for both
read and write functions. The headframe is molded from
glass-filled polycarbonate, a very stable compound that al-
lows some key dimensions to be held within a tolerance of
0.025 mm. Two posts on the headframe position the cassette
housing relative to the head and two tape guides on the
frame guide the tape relative to the head. These features are
molded into the headframe.

The headframe assembly is joined with a door, window,
and cassette pressure springs to form a door assembly very
similar to that used in many conventional cassette tape
recorders. The cassette is loaded into a slot in the door and
the action of closing the door positions the cassette in the
mechanism. When the door is released by pressing the
OPEN key, a spring pulls it open so that the cassette can be
easily removed.

When the door containing a cassette is shut, it pushes a
pin, closing a switch spring located directly on the drive
printed circuit assembly and informing the electronics that
a cassette is present. A 45-degree mirror located within each
cassette completes the optical BOT/EOT detection path. The
optoelectronic device and the head in the headframe are
connected to the drive’s printed circuit assembly by a flexi-
ble ribbon cable.

End-of-Tape
Phototransistor

Fig. 4. Exploded view of the
82161A headframe assembly.

i —-



-

The backbone of the transport is the mainframe. It is a
precision part made of glass-filled polycarbonate formed by
injection molding. All of the key subassemblies, including
the door/headframe assembly, the motors and gear systems,
the door latch, and the printed circuit assembly are fastened
to the mainframe to form a complete modular transport
mechanism,

Two identical drive motors are used. One drives the left
stack of tape and is called the forward motor. The other
drives the right stack and is called the reverse motor. The
use of two motors coupled directly to the tape stacks in this
fashion makes possible a simple speed control scheme for
reading and writing data. The motor selection involved a
tradeoff between motor performance (hence cost) and
product capability (primarily data capacity). Ironless-rotor
motors with their low inertia/torque ratio were selected.
The software definition requires interrecord gaps long
enough to allow the tape velocity to change between zero
and read/write speed between records. Selecting low-
inertia motors allows record length to interrecord gap ratios
of around 3:1. If higher-inertia motors had been used, this
ratio, as well as data capacity, would have been lower.
Another important characteristic of ironless-rotor motors in
this application is their linear tachogenerator feature. The
construction of the motors is such that their EMF, with the
commutationripple filtered out, can be used to detect motor
speed changes typically within 2 percent. Perhaps the most
important result of the selection of low-inertia motors is the
reduction of dynamic tape tension. With the two-motor,
hub-drive technique, the driving motor must pull the tape
against the other motor’s inertia. When accelerating, the
trailing motor’s inertia is multiplied by the square of the
gear reduction as it is reflected into the tape. Hence, peak
tape tensions are very sensitive to motor inertia. Tape life
was found to be dominated by dynamic tape tensions and so
the long tape life achieved in the 82161A is strongly related
to the selection of low-inertia motors.

Motors could not be found that would go slow enough
while maintaining the torque required to drive the tape
hubs directly. Therefore, a speed reducer is required.
Many methods were considered, beginning with the logical
choice of motor/gearbox combinations, but these proved to
be too expensive. O-ring and toothed-belt drive designs
were tried, but both exhibited a common problem of requir-
ing increased belt tension to avoid slipping. The higher belt
tension produced higher shaft friction, which in turn, led to
increased tape tension and reduced tape and bearing life.

The 82161A uses a custom gear drive (Fig. 5) consisting
of a pinion and drive gear for each motor with a ratio of 1:4
(15 teeth to 60 teeth). Both gears are injection-molded at a
custom gear-molding house and exceed AGMA* quality
No. 7. The diametral pitch is 96 and the gear material is
lubricated acetal resin. The pinions are pressed on the
motor shafts and the drive gears run free on ground
stainless-steel shafts pressed into the mainframe (Fig. 5a).
The motors are positioned by concentric collars fastened
also to the mainframe. Precision molding of the mainframe
allows the motor-to-drive-gear-shaft dimension to be held
to within 0.025 mm. Also running on the drive gear shafts,

*American Gear Manufacturers' Association

and axially coupled to the drive gears, are the drive splines
(see Fig. 5b). These splines fit into the cassette hubs and
transmit torque to them from the driven gears. In the event
that a cassette hub does not align with the spline when the
door is closed, the spline is spring-loaded and can be
pushed down, allowing the door to shut. When that particu-
lar side of the drive moves, spline relative to hub, the spring
pushes the spline up to engage it with the hub. These spline
springs also produce a braking action or a drag friction. This
drag was optimized for system speed performance by ad-
justing the spring constant and preload.

Head Alignment

Accurate alignment of the magnetic head in the head-
frame is crucial to give unit-to-unit read/write compatibility
for systems using multiple transports. This alignment is
done electrically, with the head actually reading signals

Rotainer ’_/// I

: K Thrust Washer

Spline ——//

\ Spline Spring
Snubber ——// —

)
/ \ Drive Gear
Pinion Gear

\ Spline Shaft

Drive Motor ———™

Fig. 5. Thetape drive systemin the 82161A uses two identical
motors, each driving a spring-loaded spline. (a) Close-up
photograph of drive gear and motor assembly. (b) Exploded
drawing of motor and drive gear system.
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from two tracks simultaneously, rather than aligning opti-
cally as has been done by HP in the past.** The head aligner
tool consists of an endless-loop tape deck, an oscilloscope,
and an ac voltmeter. A master head on the tape deck is used
to write perfectly phased signals on both tracks of a tape
loop. This loop is then read by a head requiring alignment.
The head is held inside a headframe by a tooling fixture that
sets penetration and varies azimuth (perpendicularity of
the head gap relative to tape motion) and tracking (vertical
position of the head poles relative to tape position). The two
signals read are observed on the oscilloscope and the
azimuth is adjusted until both tracks are in phase and the
combination of signals with maximum amplitudes has been
found. This ensures that the azimuth has been “perfectly”
aligned in the fixture. Next, the tracking is adjusted by
moving the head up and down until the sum of the signals
from both tracks is a maximum as measured by the voltme-
ter. This ensures that the pole spacing on the head opti-
mally matches the track positions on the alignment tape.
The two adjustments are practically decoupled on the
alignment fixtures, so convergence is not necessary. After
the head is aligned, the assembly and tooling fixture is
removed, and the head is glued in place with a fast-curing
acrylic adhesive. The headframe assembly can then be re-
moved from its fixture and the alignment rechecked to
observe any movement caused by glue cure. This procedure
produces azimuth alignment better than +5 arc-minutes,
and tracking alignment, relative to the headframe, better
than +0.05 mm. The master head is periodically used to
monitor the accuracy of the alignment tape. To check the
master head, a Mobius tape is installed on the tape deck.
This tape alternately presents front and back sides to the
master head. A signal is written on the front side and read
from the back side. The amplitude is reduced, but only the
track-to-track phase is important. If the master head is “per-
fectly” aligned in azimuth, no phase difference will occur.
An iterative process is used to align the master head if
necessary.

System Modeling

The electromechanical system of the 82161A tape trans-
port was modeled to allow studies of tape velocities and the
effects thereon of motor parameters and mechanism inertias
and frictions. The basic model is shown in Fig. 6 and the
basic equations of motion are

1,6, = Rl[Kz(Rzoz“Rﬂ')ﬂ]
1,0, = —Ry[Ky(R,0,~Ry81) ] +R3[K1(R483—Ra05)]
1305 = —Ry[K;(Ref3—Rq6,) ] +R;[Ko(R16,—R,65) ]
1,04 = _Rl[Kz(R104_Rzoa)]

This multi-degree-of-freedom system was studied by
identifying different motor-to-tape-stack and motor-to-
motor modes whose frequencies depend on the reduction
method (belts or gears) and tape stack ratios. Many of the
natural frequencies found by this model can be satisfactor-
ily filtered out by altering the servo design, but one mode
consistently showed up in the analysis that cannot. This
was identified as a ““tape mode’ or the opposing oscillation
of both hub stacks with the spring being the length of tape
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Motor ah

1
Motor™— R1

Motor\; /R1 Pinions

61 = Left motor position

6, = Left stack position

6, = Right stack position

6, = Right motor position

1; = Motor inertia

i, = Left-hub-and-tape-stack inertia
i3 = Right-hub-and-tape-stack inertia

K; = Connecting tape stitiness
Kz = Gear mesh stiffness

R, = Pinion radius

R, = Hub radius

R; = Left stack radius

R4 = Right stack radius

Fig. 8. Diagram defining tape motor drive parameters usedto
model 82161A transport system behavior.

between the two stacks. During read/write operation, when
the servo is controlling tape speed, this tape mode, if ex-
cited, is superimposed on the steady-state tape velocity and
becomes what was found to be the major cause of tape speed
jitter. In all of the configurations studied, this jitter fre-
quency is near 500 Hz. This tape mode cannot be effectively
corrected by the servo because it is totally isolated from the
motors and hence is “invisible” to the servo. This tape
mode creates oscillations in tape tension, but the mag-
nitude of the oscillations was found to be less than the
steady-state tape tension. Thus, the treatment of the tape as
a linear spring was not negated by the fact that the tape
cannot be put into compression. This phenomenon will be
discussed further in reference to the slow-start circuitry in
the motor drive.

The tape mode oscillations would not be a major diffi-
culty if there was no 500-Hz excitation in the mechanism to
get them going. Unfortunately, because of the size of the
transport, the gear pitch selection was limited, and 500-Hz
perturbations caused by gear backlash are unavoidable.
Hence, two methods are used to damp the tape mode. First,
friction is added by using the spline spring as described
previously, and second, viscous rubber snubbers are added
between the drive gear and the spline (see Fig. 5). In this
position, the snubbers serially provide a viscoelastic ele-
ment between the perturbation (gear backlash) and the ele-
ments (the cassette stacks) producing the tape mode oscilla-
tions. The combination of these two damping schemes re-
duces speed jitter by approximately 50% to a range of 10%
of average tape speed.



Motor Drive

The 82161A mechanism combines software, electronics,
and mechanics to control both the position and the velocity
of the tape. TTL-compatible inputs to the motor drive cir-
cuitry allow the microcomputer to select any of five possi-
ble modes of operation.

The fast forward and rewind modes move the tape at 76 to
152 cm/s, during which time the microcomputer counts
interrecord gaps to determine tape position (record
number). Once the desired position has been reached, the
slow forward mode is activated for a data read/write opera-
tion. Forward and reverse braking is accomplished by using
the back EMF of the trailing motor to generate a reverse
torque to decelerate the system.

The fast forward, rewind, and slow forward modes use
the leading motor as the actuator and the trailing motor is
“pulled” by the tape. The no-load friction of the trailing
motor and its associated gears provides tape tension to aid
speed control and help keep the tape in contact with the
magnetic head. The forward and reverse braking modes use
the trailing motor as the actuator and the tape as the
mechanical link to decelerate the leading motor.

The heart of the motor drive electronics is the velocity
control circuitry (Fig. 7). To ensure read/write compatibil-
ity, linear tape velocity past the magnetic head must be a
controlled, repeatable function of tape position. Although
holding the angular velocity of one motor constant would
satisfy this objective, tape capacity would be severely limit-
ed because the linear tape speed would vary over a wide
range as the radii of the takeup and supply reels, respec-
tively, increase and decrease. However, holding the sum of
the angular velocities of both motors constant not only
satisfies the above requirements, but dramatically increases
data capacity by maintaining a more uniform linear tape
velocity.

The input to the servo is a controllable reference voltage.
The servo acts to hold the sum of the back EMFs of the two
motors equal to this reference. As shown in Fig. 7, the
forward transfer path consists of an error amplifier, a power
stage, and the mechanical system. The back-EMF summer
forms the feedback path. All necessary frequency compen-
sation is implemented in the error amplifier and includes a

Vu

c1 F ;

Reference

y EMF_ +Iy(Ru+Rs)

pole at the origin to integrate out dc errors, a low-frequency
zero at 4 Hz to compensate a pole of the mechanical system,
and a second pole at =40 Hz to filter out unwanted motor
commutation noise that appears in the feedback signal. At
frequencies within the range of interest (40 Hz), the open-
loop transfer function of the system, including compensa-
tion, consists of a single pole at the origin. Local feedback
for the error amplifier is derived from the output of the
power stage to minimize crossover distortion. As discussed
earlier, the transfer function of the mechanical system is
quite complex and includes several oscillatory modes. For-
tunately, these modes are either at frequencies well outside
the bandwidth of the servo or are invisible to the servo so
that no serious electronic stability problems arise.

A novel feature of this servo is the speed sensor which
sums the back EMF from each motor. Since no current flows
through the trailing motor, the back EMF is simply its
terminal voltage and isreadily available to determine motor
speed. However, the current required to produce drive
torque generates a voltage across the rotor resistance of the
leading motor which is superimposed on its back EMF. In
the past, this speed measurement problem has been avoided
by using either pulse-width modulators, which sample
back EMF by momentarily removing power, or transducers
which do not rely on back EMF. For this application, low-
frequency pulse-width modulators would dissipate addi-
tional power in the motor and generate electrical and
mechanical noise caused by their switching transients.
Transducers are too expensive, too large, and require too
much additional hardware.

The chosen scheme dynamically sums the terminal volt-
age of each motor and subtracts the voltage caused by the
drive currents in the leading motor. Referring to Fig. 7,

Vo = EMF, +1,Ry,
—[(EMF| +1yRy,+IyRg) —(EMF +1R\) ] (R3/R2)
+[(EMF, +1Ryy) —(EMF_ +1Ry,~EMF) |(R3/R1)

If R1=R3, and canceling terms,

Vo=EMF+IyRy—~IMRs(R3/R2) +EMFr

o st

. EMF_+lu(Rw)
. ’Q?L@_ﬁum-um—suﬁ
| Rs [ |
|

Back-EMF Summer

V Fig. 7. Simplified schematic of
velocity control servo.
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Then, if R2 is adjusted such that Ry/Rs=R3/R2,
Vo=EMF+EMFT1

As can be seen from the derivation above, if resistance
matching is done (using potentiometer R,), the output of
the feedback amplifier is the true sum of the back EMF of the
motors. Rg is specified as a copper wirewound resistor so
that its temperature coefficient of resistivity will match that
of the motor's ironless rotor, thus holding the ratio of Ry to
Rg constant and ensuring consistent speed control over the
full operating temperature range.

The fast forward and rewind modes are implemented by
“fooling” the servo. Grounding point A in Fig. 7 eliminates
the feedback and causes the output of the error amplifier to
go high and drive the motor at high forward speed. Forcing
point B low causes V, to be high, thus forcing the output of
the error amplifier low. This, in combination with closing
switch S1 and lifting the ground on the leading motor
(using transistor switches), results in the rewind mode.

To use the feedback from both motors to control speed, it
is essential that the motors be mechanically linked in a
predictable, linear fashion. In the 82161A, this link is the
tape. Because the tape cannot support compressive forces,
slack in the tape can occur and totally uncouple the leading
and trailing motors. The typical result is a “bang-bang”
servo action. The leading motor is driven until its back EMF
equals the reference value. Suddenly the tape slack is taken
up and the trailing motor begins to mave and injects a step
function into the feedback signal. The error amplifier re-
sponds by slowing the leading motor, which allows the
trailing motaor to spool up and form anotherloop. This starts
the process all over again.

Once the 82161A has attained stable slow forward opera-
tion, this problem is prevented by the tape tension gener-
ated by system friction. However, when the slow-forward
mode is initiated, there is always some amount of slack in
the tape, and this slack must be eliminated first before
accelerating to full speed. In addition, since overshoot can
cause the same problem, the rate of change of the speed
reference voltage must be slowed to the point where the
servo can keep up.

The slow-start circuit performs these functions by con-
trolling the reference voltage to the servo. When the slow
forward mode is selected, the reference is held to a low
value for approximately 130 ms, during which time the
slack is removed from the tape. Then, the reference voltage
rises exponentially towards an asymptotic value, allowing
a smooth acceleration to read/write speed without over-
shoot.
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Scientific Pocket Calculator Extends
Range of Built-In Functions

Matrix operations, complex number functions, integration,
and equation solving are only some of the numerous
preprogrammed capabilities of HP's latest scientific

calculator, the HP-15C.

by Eric A. Evett, Paul J. McClellan, and Joseph P. Tanzini

HE NEW HP-15C Scientific Programmable Calcu-

lator (Fig. 1) has the largest number of prepro-

grammed mathematical functions of any handheld
calculator designed by Hewlett-Packard. For the first time
in an HP calculator, all arithmetic, logarithmic, exponen-
tial, trigonometric, and hyperbolic functions operate on
complex numbers as well as real numbers. Also, built-in
matrix operations are provided, including addition, sub-
traction, multiplication, system solution, inversion, trans-
position, and norms,

The HP-15C also performs the SOLVE and j; functions,
which are very useful tools in many applications. The
SOLVE operator numerically locates the zeros of a func-
tion programmed into the calculator by the user.! The
f; operator numerically approximates the definite integral
of a user-programmed function.?

Design Objectives

The HP-15C was designed with the following goals in
mind:

Provide all functions of the HP-11C and HP-34C Calcu-

lators in the same slim-line package used for the HP-11C

Provide additional convenient, built-in advanced

mathematical functions which are widely used in many

technical disciplines.

Achieving the first objective posed a keyboard layout
problem. The nomenclature for the HP-11C functions filled
every position on the keyboard. Since the display is limited
to seven-segment characters, functions could not be re-
moved from the keyboard and accessed by typing the func-
tion name as is done on the HP-41 Handheld Computers.
Therefore, to free some space on the keyboard, only the two
most common conditional tests are placed on the keyboard,
x=0 and x=<y. A TEST prefix is added to access the other ten

Fig. 1. The HP-15C is an ad-
vanced programmable calculator
with special functions that enable
the user to solve problems involv-
ing matrices, integrals, complex
arithmetic, and roots of equations.
Its slim-line design fits easily in a
shirt pocket.
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tests by executing TESTO, TEST1,. ..., TEST9. A table on the
back of the calculator indicates the correspondence be-
tween the digits and tests. This frees enough positions on
the keyboard to add the SOLVE and [ : functions, plus a few
more.

In striving to attain the second objective, we noted that
nearly every text covering advanced mathematics for sci-
ence and engineering includes chapters on complex analy-
tic functions and matrix algebra. They are fundamental
tools used in many disciplines. Furthermore, the complex
functions and many of the matrix operations can be viewed
as extensions of the functions already on the keyboard. This
is an important consideration because of the limited
number of key positions available. Thus, our goal was to
extend the domain of some of the built-in functions to
complex numbers and matrices in a natural way without
altering how those functions operate on real numbers.

Complex Mode

A complex mode was introduced in which another regis-
ter stack for imaginary numbers is allocated parallel to the
traditional register stack for real numbers (Fig. 2). Together
they form what is referred to as the complex RPN * stack.

The real X register is always displayed. A complex
number a+ib is placed in the X register by executing a,
ENTER, b, I. The user may display the contents of the imagi-
nary X register by executing Resim to exchange the con-
tents of the real and imaginary X registers. Or the user may
hold down the (i) key to view the imaginary part without
performing an exchange.

ENTER, R/, R, xsy, and LST x all operate on the complex
stack, but CLx and CHS operate only on the real X register so
that one part of a complex number can be altered or com-
plemented without affecting the other. For example, the
complex conjugate is performed by executing Resim, CHS,
Re=im.

The following functions include complex numbers in
their domain: +, —, x, +, 1/x, V'x, x2, ABS (magnitude), LN,
e", LOG, 10% y* SIN, COS, TAN, SIN', COS~", TAN™', SINH,
COSH, TANH, SINH ™!, COSH ™", and TANH ™. These functions
assume the complex inputs are in the rectangular form,
a+ib. i

Often complex numbers are expressed in polar form: re’
= r(cosf® + isin#). In complex mode, the polar-to-
rectangular conversion functions —»P and —R provide a

*Reverse Polish notation, a logic system that eliminates the need for parentheses and
“equals” keystrokes in calculator operations.

]

Real Imaginary

X < N -

LSTx

Fig. 2. To handle complex numbers, the HP-15C uses
another register stack in parallel with the traditional RPN stack.
Only the contents of the X register in the real stack are dis-
played.

26 HEWLETT-PACKARD JOURNAL MAY 1983
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L e
Zy=3-j4
Z,=10

Zeq=1/(11Z1+1/22)

Fig. 3. The complex arithmetic capabilities of the HP-15C
make it easy to solve for the equivalent impedance of this
parallel circuit (see text).

convenient means for converting between the polar and
rectangular forms of a complex number.

Complex numbers are used extensively in electrical en-
gineering. For example, to find the equivalent impedance
in the parallel circuit shown in Fig. 3, perform the following
steps on the HP-15C:

Keystrokes Calculation
3 ENTER 4 CHS | Z,

1/x 1Z,
10 Z,

1/x YZ,

+ -1z, +1/Z,

1/x Zoq = 1(1Zy + 1Z,).

Hold down (i) key to
view imaginary part.
Z,,q = 2.9730 — 2.1622i

—P Convert to phasor form.
Zoq = 3.6761 £ —36.0274°

This example is a very elementary application of the
built-in complex function capability. Since complex opera-
tions can be used in conjunction with the SOLVE and [ ;
functions, the HP-15C can be programmed to carry out some
sophisticated calculations such as computing complex line
integrals and solving complex potentials to determine
equipotential lines and streamlines.?

Matrix Descriptors

No set of matrix operations is complete without addition,
subtraction, multiplication, system solution, and inversion.
To provide these operations on the HP-15C, it seemed
natural to extend the domains of the +, —, x, +, and 1/x
functions to include matrix arguments. Since these func-
tions operate on the stack contents, a means of placing a
matrix name (descriptor) on the stack is essential. The set of
alpha characters that can be represented in a seven-segment
font is limited, but the letters A, B, C, D, and E have reason-



AbLdE

Fig. 4. The seven-segment font used in the HP-15C's liquid-
crystal display allows representations of the alphabetic
characters A, B, C, D, and E as shown above for use inlabeling
matrices.

able representations (Fig. 4).

Thus the decision was made to allow up to five matrices
to reside in memory simultaneously, named A, B, C, D, and
E. Their descriptors are recalled into the X register by the
sequence RCL MATRIX followed by the appropriate letter.
When the X register contains a matrix descriptor, the matrix
name and dimensions are displayed. Matrix descriptors
may be manipulated by stack operations and stored in regis-
ters just like real numbers, and certain functions accept
matrix descriptors as valid inputs. For example, suppose C
and D are 2-by-3 and 3-by-4 matrices, respectively, which
are already stored in memory. To compute the matrix prod-
uct CD and place the result in matrix A, the user parallels
the steps required for real number multiplication, except
that the result destination must be specified:

Keystrokes HP-15C Display
RCL MATRIX C C 2 3
RCL MATRIX D d 3 4
RESULT A d 3 4

At this point, the HP-15C’s RPN stack contains the informa-
tion shown in Fig. 5a. The matrix operands are in the stack,
and the result matrix is specified. The user now executes x
to compute the matrix product. When x is executed, the
presence of the matrix descriptions in the Y and X registers
is detected, the matrices are checked for compatible dimen-
sions, the result matrix A is automatically dimensioned to a
2-by-4 matrix, the product is computed, and the matrix
descriptor of the result is placed in the X register and dis-
played (Fig. 5b).

The operators + and — work similarly, and + performs the
matrix operation X~'Y if the X and Y registers contain
matrix descriptors. This is useful for linear system solution,
since the solution to the matrix equation XR=Y is
R=X"'Y. The 1/x function key performs matrix
inversion.

Other important matrix operations that are not natural
extensions of functions on the keyboard are accessed by the
prefix MATRIX followed by a digit. These include transpose,
determinant, and matrix norms. A table on the back of the
calculator indicates the correspondence between the digits
and matrix operations.

Internal Format of Descriptors
Normal floating-point numbers are internally rep-

resented in the HP-15C by using a 14-digit (56-bit) binary-
coded-decimal (BCD) format (Fig. 6).

The exponent e is given by XX if XS=0, and by
—(100-XX) if X§=9. The value of the number is interpreted
as (—1)S(M.MMMMMMMMM)x10°. For example,

01234000000002 represents 1.234 X 102
and
91234000000994 represents —1.234 X 1075,

Matrix descriptors, on the other hand, are distinguished
by a 1 in the mantissa sign digit and a hexadecimal digit
corresponding to the matrix name in the most significant
digit of the mantissa field. For example, the matrix descrip-
tor C is represented internally as 1C000000000000.

When a matrix descriptor is detected in the X register, the
matrix name is displayed, and the current dimensions of
that matrix are fetched from a system memory location and
also displayed.

Creating Matrices and Accessing Individual Elements
A matrix is dimensioned by entering the row and column
dimensions in the Y and X registers of the stack, respec-
tively, and then executing the DIM prefix followed by the
matrix name. Individual matrix elements are accessed by
executing the STO or RCL prefixes followed by the matrix
name. The element accessed is determined by the row and
column indexes stored in registers R0 and R1, respectively.
Matrix data is usually entered or reviewed from left to

-

N

<

bed

3 4

Display

LSTx
(a)

N -

<

oL (™
ny
W

Display

x 24
d 34

LSTx

(®)

Fig. 5. Before multiplying matrices C and D, the information in
the RPN stack is located as shown in (a). After multiplication,
the result, matrix A, is located as shown in (b) and the LSTx
register contains the information for matrix D.
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right along each row and from the first row to the last. To
facilitate this process, a user mode is provided in which the
indexes are automatically advanced along rows after each
STO or RCL matrix access operation. After the last element
of the matrix has been accessed, the indexes wrap around to
1,1. As an added convenience, executing MATRIX 1 ini-
tializes the indexes to 1,1.

The following example illustrates some of these features
by solving the following matrix equation for C:

A

5 -2 c(1,1)
4 6 c(2,1)

c(1,2) 8 3
c22| Tl 2 -s

Keystrokes Display Comments
USER Select USER mode.
MATRIX 1 Initialize indexes in

2 ENTER DIM A 2.0000

registers RO and
R1 to 1.

Dimension matrix A to
2 by 2.

DM B 2.0000 Dimension matrix B to
2 by 2.

5 STO A 5.0000 a(1,1)

2 CHS STO A -—-2.0000 a(1,2)

4 STO A 4.0000 a(2,1)

6 STO A 6.0000 a(2,2). Indexes wrap
around to 1,1.

8 STO B 8.0000 b(1,1)

3 STO B 3.0000 b(1,2)

2 STO B 2.0000 b(2,1)

6 CHS STO B —6.0000 b(2,2). Indexes wrap
around to 1,1.

RCL MATRIX B b 2 2 Recall right-hand side

RCL MATRIX A A 2 2 Recall coefficient matrix

RESULT C A 2 2 Specify matrix C as result.

+ C 2 2 Compute C=A"1B.

RCL C 1.3684 c(1,1)

RCL C 0.1579 ¢(1,2)

RCL C —0.5789 ¢(2,1)

RCL C -1.1053 ¢(2,2)
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Mantissa Sign Exponent Sign

. V) ——
~~

Two-Digit
Exponent
+: XS=0
-: XS=9

Ten-Digit Mantissa

Fig. 6. The internal representation for floating-point numbers
in the HP-15C uses a 14-digit (56-bit), binary-coded-decimal
format.

Available Matrix Memory, Speed

A maximum of 64 matrix elements can be distributed
among the five matrices. Since the HP-15C can invert ma-
trices in place, up to an 8-by-8 matrix can be inverted. There
is also enough memory to solve a 7-by-7 linear system of
equations. Table I specifies the approximate time required
to perform certain matrix operations.

Table |
Time in Seconds for Selected Matrix Operations
Order of Determinant Solving a Matrix

Matrix System Inversion

1 0.5 0.5 0.5

2 1.3 2.0 1.8

3 2.8 4.2 5.3

4 5.3 7.6 12

5 9.1 12 22

6 14 19 36

7 21 28 55

8 30 — 80

Designing the Complex Function Algorithms

After deciding to extend the real-valued functions and
the RPN stack to the complex domain, our next step was to
design the algorithms for complex arithmetic. Although
their defining formulas are very simple, some disturbing
examples made us question what accuracy should be
achieved to parallel the high quality of the real-valued
functions.

The real functions are generally computed with a small
relative error (less than 6 X101 except at particular points
of certain functions, where it is too costly in execution time
or ROM space for the result tobe computed that accurately.3

The relative difference R(x,y) between two numbers x and
y is given by

Ix-y|

R(x,y) = vl
y

When X is an approximation of x, then we say R(X,x) is the
relative error of the approximation X. Notice that the size of
the relative error is related to the number of digits that are
accurate. More precisely, R(X,x) <0.5x10™"implies that X



is an approximation to x that is accurate to n significant
digits.

If we always wish to obtain small relative errors in each
component of a complex result, then the outcome of the
following example is very disappointing. For simplicity we
will use four-digit arithmetic, instead of the 13 digits used
internally to calculate the 10-digit results delivered to the X
register of the calculator.

Example 1: Using the definition for complex multiplica-
tion,

(a +ib)(c + id) = (ac = bd) + (ad + be)i,

consider the four-digit calculation of Z x W, where
Z =37.1+ 37.3i and W = 37.5 + 37.3i. We get,

Z x W=(1391 — 1391) + (1384 + 1399)i
=0 + 2783i

Since the exact answer is —0.04 + 2782.58i, it is clear that
accurate components are not always achieved by a simple
application of this formula. The difference axc—bxd has
been rounded off to result in a loss of all significant digits of
the real part. The loss can be eliminated, but the calculation
time would increase roughly by a factor of 4. Is it really
worth this higher cost in execution time? For comparison
we will consider an alternative definition of accurate com-
plex results.

Complex Relative Error

As with real approximations we often want our errors
small relative to the magnitude of the true answer. That is to
say, we want | (approximate value)—(true value)|/|(true
value) | to be small enough for our purposes. So relative
error may be extended to the complex plane by R(Zz) =
|Z—z|/|z|. This extension may be applied to vectors in any
normed space. A simple geometric interpretation is illus-
trated in Fig. 7. Approximations Z of z will satisfy R(Z,z) <&
if and only if the points Z lie inside the circle of radius 5|z |
centered at z. This condition for complex relative accuracy
is weaker than that for component accuracy. If the errors in
each component are small, then the complex error is small.
To show this, assume that R(X,x) < § and R(Y,y) < § where
z=x+iy. Then,

R(Zz) = |(X — x) +i(Y - y)|/|z]

< |X - x|l|z| + |Y —y]|/|z|

=R(Xx) +R(Y,y)

<28
Actually, R(Z,z) is less than 8, but this is slightly more
difficult to show. On the other hand, however, a small
complex error does not imply small component errors. Re-
ferring back to Example 1, we see that R(ZW, zw)=0.0002,
which is respectably small for four-digil precision, even
though the real component has no correct digits.

It is not unusual for only one component to be inaccurate
when the result is computed accurately in the sense of
complex relative error. In fact, because the error is relative
to the size |z|, and because this is never greatly different
from the size of the larger component, only the smaller
component can be inaccurate.

Fig. 7. Asimple geometric representation of complex relative
error R(Z,z)<é.

To show this we shall assume, without loss of generality,
that |x| is the larger component. Then

|z|/|x| =V 1+|yi]?,

which implies that 1= |z/x| < V'2, since |y| < |x| by
assumption. Thus |x| and |z| do not differ greatly. The
important part is that |x| = |z|/V/2. This gives

X=x|l|x| < |Z-2|/|x| < VZ|Z-2]l|z| < VIREZz)

So the relative error of the larger component (assumed to be
x here) is very nearly as small as the complex relative error
bound R(Z,z). It also follows that the smaller component is
accurate relative to the larger component’s size (i.e.,
|Y-y|l|x| = |Z-z|/|x| <V 2R(Z,2).

This provides a quick way to determine which digits of a
calculated value can possibly be incorrect when it is known
that the calculated value has a certain complex error. By
representing the smaller component with the exponent of
the larger component, the complex error indicates the
number of correct digits in each component.

For instance, in Example 1 we obtained the approxima-
tion Z = 0 + 2783i of the true answer —0.04 + 2782.58i.
Since the larger component is 2.783 x 10® we will represent
the first component with the same exponent (0.000 x10%) to
obtain Z=0000.0+2783i, These components must be accu-
rate to nearly four digits since R(Z,z) = 0.0002.

Perhaps the zero component of Z confuses the issue here,
so another example may be appropriate. First, let

Z =1.234567890x10° 10 + 2.222222222%x107%
Then think of Z as
Z = 0.0000001234567890x10 % + 2.222222222x10 %
If the complex relative error indicates 10-digit accuracy,
i.e., R(Z,z) < 0.5%10 'Y then this implies that the first 10

digits are correct, that is,

Z = 0.000000123 %1073 + 2.222222222%x 1073
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Error Propagation

We have seen that computing the product of two complex
numbers in the straightforward manner does not necessar-
ily result in a small error in each component (Example 1).
However it can be shown that the product does have a
complex relative error bound of roughly 10 ™ whenever n
digits of precision are used in the calculation. Moreover,
small relative errors in the input values give rise to relative
errors nearly as small in the output values. This is not true
for small component errors. One acceptable rounding error
in an input value may produce an inaccurate component,
even when the multiplication is exact. This is illustrated by
the following example.
Example 2: Let z = (1 + 1/300) +i and w =1 + i, then
using four-digit precision we have

Z =1.003 + 1.000i
and W =1.000 + 1.000i

Therefore,
ZW =0.003 + 2.003i
=3.000 X 1072 + 2.003i

exactly, yet
zw =3.333 x 1073 + 2.003i

to four digits. The single rounding error of 1+1/300
— 1.003 in the component of the input Z was magnified
from a relative error of 0.0003 to 0.1.

So, in general, computing accurate components will not
improve the result of a chain calculation because inter-
mediate input values are often inexact (this is the idea of
backward error analysis and is explained more fully in
reference 3). It is important to realize that this is not, in
itself, a good reason to forsake accurate results based on the
assumption that the input values are not exact. For exam-
ple, if we assume that X has an error in its eleventh digit and
thus decide that sin(X) for X> 10° degrees, say, need not be
computed accurately, then we would have failed to provide
a useful result for those special cases where we know that
the input value is exact.

As a simple illustration consider accurately calculating
the value sin(1,234,567,899.1234567890) where the argu-
ment is in degrees. Using

sin(1,234,567,899) = 0.9876883406

is grossly inaccurate. Instead, let x = 1.234567899x10° and y
= 0.123456789, then evaluate

sin{x+y) = sin(x)cos(y) + cos(x)sin{y).

Here we know x is exact, and since sin(x) and cos(x) are
computed accurately by the HP-15C, the final result
sin(x+y) = 0.9873489744 is very accurate.

The point here is that clean results (in particular accurate
components) are desirable, but in our estimation the cost of
adding ROM and increasing execution time was too high on
this machine to provide complex arithmetic that is accurate
in each component. However, accurate components are de-
livered in those functions where it is more practical. This is
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discussed further in the following section.

In general, the HP-15C delivers complex results that
satisfy R(Z,z) <6x10~ !, except where functions involving
trigonometric calculations (in radians) are evaluated at very
large arguments or near transcendental zeros such as mul-
tiples of 7. This inaccuracy is embedded in the real-valued
functions and is an example of an error that is too costly to
correct completely.?*

Some Specific Complex Functions

For complex arithmetic we obtained accurate results (i.e.,
small complex relative errors) from the standard formulas
used to define each operation. But, in general, defining
formulas are usually not accurate for computers. In this
section we will single out two particular functions, sin(z)
and V'z, and very briefly focus on some difficulties that
arise.

Sin(z). A typical defining formula for the complex sine

function is given by

(1)

If this is used to compute sin(z) for small |z|, the two
exponential terms will be nearly equal and thus cause a
loss of accuracy. This will result in a large complex
relative error even though each step of the calculation is
very accurate. If equation (1) is replaced by

sin z = sin(x) cosh(y) + i cos(x) sinh(y) (2)
where z = x+iy, then the relative error problem for small
|z| will be solved, and furthermore the components will
become accurate (except for the trigonometric difficulty
with large angles mentioned earlier). To observe the
striking difference in results, we calculate

w = sin (1.234567 10 ~° + 9.876543 x10"%})

for each formula. The outcome is represented below.

Eqn. W (10-digit calculation of w) R(W,w)
(1) 1.234567006 X105 + 9.876530060 X105} 106
2) 1.234567006 X105 + 9.876543015%x10-5 10~10

The HP-15C’s internal calculation is based on equation
(2), with minor modifications that exploit the relation-
ships between the real functions to eliminate redundant
computation.

V/ z. The most common definition of the principal square
root is

\Vz =\/m ifl2 (3)

where 8 is the Arg (z), satisfying —w<6<m.

This formula is accurate with respect to complex relative
error, but not accurate in each component. This can be seen
by working through the calculation of V'@, wherea =—1 +
(—1x107 "), with 10-digit precision. Here /2 rounds to
precisely 90 degrees, thus causing V a—0—1i, while the true



value rounds to 5x10~1® —i. The complex error is small but
certain information in the real component is lost. The fact
that V'a lies on the right side of the imaginary axis can be
critical when computing near discontinuities called branch
cuts. For example, In(—iV a) =~ —iw/2, but the inaccurate
component of V a will cause it to evaluate to in/2 since
-iV ais near the branch cut of In(z). More will be said about
branch cuts in the next section.

It turns out that V' z can be computed with accurate
components and without loss in execution time. This func-
tion, along with the inverse trigonometric and hyperbolic
functions, is computed on the HP-15C with accurate com-
ponents. Their algorithms are not described by a simple
formula as with sin(z) in equation (2), but rather are de-
scribed in terms of their components. These accurate com-
ponents are achieved by recognizing and eliminating errors
such as those described above.

Principal Branches

The function V' z is an inverse function of f(z) = 2z2. Asis
often the case with defining inverses, we must select from
more than one solution to define the principal branch of the
inverse. This is done for the real function by selecting the
non-negative solution of x? = a and denoting it by Va.
Because of the branch point at 0, any branch for V"a must
have a discontinuity along some slit (branch cut). In equa-
tion (3) above, it is along the negative real axis. Notice in
Fig. 8 that values below the negative real axis map to values
near the negative imaginary axis, while above the slit, val-
ues map near the positive imaginary axis. Since it is tradi-
tional to have i = V' —1 we must attach the slit (negative
real axis) to the upper half plane, making it continuous from
above and not from below, that is, —w<@#<w. One will
occasionally see V/ 'z defined for 0<§<2, which places the
discontinuity along the positive real axis. We have avoided
doing something like this in the branches of all of the
complex inverse functions so that each will be analytic in a
region about its real domain. This is important since com-
plex computation is often performed in a region about the
real domain in which the function’s values are defined by
the analytic continuation from the real axis.

The placement of the branch cuts and the function values

along the slit are fairly standard for V'z and In(z), but the

inverse trigonometric and hyperbolic functions have not, as
yet, become standardized. However, by following a few
reasonable rules there is not much room for variation.

The first rule, analyticity about the real domain, has al-
ready been mentioned. Secondly, we have tried to preserve
fundamental relationships such as the oddness or evenness
of functions (e.g., sin(—z) = —sin(z)) and the computational
formulas relating functions to the standard principal
branches of In(z) and V'z (e.g., w/2—sin(z) = gz) V1—z
where g(z) is analytic at 1, that is, a power series in z—1).

The determination of formulas involving a choice of
branches is often quite complicated. W.M. Kahan has pre-
sented a very enlightening discussion’ of branch cuts and
has pointed out to us that the HP-15C branch cuts should
satisfy certain simple formulas relating them to the princi-
pal branch of In(z). These formulas are satisfied and are
reproduced below.

In(z)
and Vz

In(|z]) + i Arg(z)
exp(In(z)/2)

with —7 < Arg(z) < w and V0 =0

arctanh(z) = [ln(l +z) —In(1' - z)]/Z
= —arctanh(—2z)

arctan(z) = —i arctanh(iz)
= —arctan(-z)

arcsinh(z} = In(z + V1 +z2)

= —arcsinh(-z)

arcsin(z) = —i arcsinh(iz)
= -—arcsin{—z)

arccos(z) 7w/2 — arcsin(z)

arccosh(z) = 2In[V(z + 1)2 + V(z — 1)2 ]

These are not intended as algorithms for computation, but
as relations defining precisely the principal branch of each
function.

Matrix Calculations

As mentioned earlier, the HP-15C can perform matrix
addition, subtraction, and multiplication. It can also calcu-
late determinants, invert square matrices, and solve sys-
tems of linear equations. In performing these last three
operations, the HP-15C transforms a square matrix into a
computationally convenient and mathematically equiva-
lent form called the LU decomposition of that matrix.

LU Decomposition

The LU decomposition procedure factors a square matrix,
say A, into a matrix product LU. L is a lower-triangular
square matrix with 1s on its diagonal and with subdiagonal
elements having values between —1 and 1, inclusive. U is an
upper-triangular square matrix. The rows of matrix A may
be permuted in the decomposition procedure. The possibly
row-permuted matrix can be represented as the matrix

z w
P “t\———, _____ ____N\\\
’ P T
/ —'\\T’——-—’ "\
y--— \
' ;\, - A= ——» ST !___’
\\‘ e e ——— [— W
(@) Z=w? by w=VZ

Fig. 8. The complex function Z = w2, shown in (a) has an
inverse function w = VZ, shown in (b), which maps the Z
plane onto the right half plane of w with a branch cut along the
negative real axis of the Z plane.
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product PA for some invertible matrix P. The LU decom-
position can then be represented by the matrix equation
PA =LUor A =P7ILU.

The HP-15C uses the Doolittle method with partial pivot-
ing to construct the LU decomposition. It constructs the
decomposition entirely within the result matrix. The
upper-triangular part of U and the subdiagonal part of L are
stored in the corresponding parts of the result matrix. It is
not necessary to save the diagonal elements of L since they
are always equal to 1.

Partial pivoting is a strategy of row interchanging to
reduce rounding errors in the decomposition. The row in-
terchanges are recorded in the otherwise underused XS
format fields of the result matrix’s diagonal elements. The
recorded row interchanges identify the result matrix as
containing an LU decomposition and the result matrix’s
descriptor includes two dashes when displayed.

The determinant of the decomposed matrix A is just
(—1)" times the product of the diagonal elements of U,
wherer is the number of row interchanges represented by P.
The HP-15C computes the signed product after decompos-
ing the argument matrix A into the result matrix.

The HP-15C calculates the inverse of the decomposed
matrix using the relationship

ATl=[p U]l =ulL'p

It does this by inverting both U and L, computing the prod-
uct of their inverses, and then interchanging the columns of
the product in the reverse order of the row interchanges of
A. This is all done within the result matrix.

Solving a system AX=B for X is equivalent to solving
LUX=PB for X, where PA=LU denotes the LU decomposi-
tion of A. To solve this system, the HP-15C first decomposes
the matrix A in place. The calculator then solves the matrix
equation LY=PB for matrix Y (forward substitution) and
finally UX=Y for matrix X {backward substitution), placing
the solution X into the result matrix.

The LU decomposition is returned by a determinant or
system solution calculation and can be used instead of the
original matrix as the input to subsequent determinant,
matrix inverse, or system solution calculations.

Norms and the Condition Number

A norm of a matrix A, denoted by || A, is a matrix
generalization of the absolute value of a real number or the
magnitude of a complex number. Any norm satisfies the
following properties:

= ||A|l = 0 for any matrix and || A|| =0 if and only if
A=0

s |aA| =|a|] x | A| for any number a and matrix A

s« |[A+B| < ||A| + | B] for any matrices A and B

a |AB| = ||A] x ||B]| for any matrices A and B.

One measure of the distance between two matrices A and B
is the norm of their difference, || A—B || . A norm can also be
used to define a condition number of a square matrix, which
measures the sensitivity of matrix calculations to perturba-
tions in the elements of that matrix.
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The HP-15C provides three norms. The Frobenius norm
of a matrix A, denoted || A || p, is the square root of the sum
of the squares of the matrix elements. This is a matrix
generalization of the Euclidean length of a vector.

The HP-15C also provides the row (or row-sum) norm.
The row norm of an m-by-n matrix A is the largest row sum
of absolute values of its elements and isdenoted by || A || g:

n
Al = max 3 |ay
1sism j=1

The column (or column-sum) norm of a matrix A is denoted
by || A || cand is the largest column sum of absolute values
of its elements. It can be computed as the row norm of the
transpose of the matrix A.

For any choice of norm, a condition number K(A) of a
square matrix A can be defined by

K(A) = Al x 1A~

ThenK(A) = | A x AT ]| = |AATY| = 1] =1
for any norm. The following discussion assumes the condi-
tion number defined by the row norm. Similar statements
can be made for the other norms.

Ifrounding or other errors are present in matrix elements,
these errors will propagate through subsequent matrix cal-
culations. They can be magnified significantly. Consider,
for example, the matrix product AB where A is a square
matrix. Suppose that A is perturbed by the matrix AA. The
relative size of this perturbation can be measured as

| AA || /]| A - The relative size of the resulting perturba-
tion in the product is then

IAAB|/|AB| = |AAAT'AB| /| AB||
< aaAa™!
i -1
< faa] x A7

=K(A) [|AA | /] A]

with equality for some choices of A, B, and AA. Hence K(A)
measures how much the relative uncertainty of a matrix can
be magnified when propagated into a matrix product.

Uncertainties in the square system matrix A or the matrix
B of the system of equations AX=B will also propagate into
the solution X. For small relative uncertainties AA in A, say
| AA || /] A || <<1/K(A), the condition number is a close
approximation to how much therelative uncertainty in A or
B can be magnified in the solution X.6

A matrix is said to be ill-conditioned if its condition
number is very large. We have seen that errors in the data—
sometimes very small relative errors—can cause the solu-
tion of an ill-conditioned system to be quite different from
the solution of the original system. In the same way, the
inverse of a perturbed ill-conditioned matrix can be quite
different from the inverse of the unperturbed matrix. But
both differences are bounded by the condition number; they
can berelatively large only if the condition number is large.



Singular and Nearly Singular Matrices

A large condition number also indicates that a matrix is
relatively close to a singular matrix (determinant = 0).
Suppose that A is a nonsingular matrix.

UK(A) = min (|| A-S /] A]l)

and 1/|A”"| = min (] A-S|),

where each minimum is taken over all singular matrices S.6

1/|| A7} is the distance from A to the nearest singular

matrix. 1/K(A) is this distance divided by the norm of A.
For example, if

1 1
A =
1 0.9999999999

then
—9,999,999,999 1010
A™' =
- 1010 —1010
and || A-1 || = 2x1010,. Therefore, there should exist a per-

turbation matrix AA with [|AA || =5x10~11 that makes
A + AA singular. Indeed,

0 -5 x10-11
AA =
0 5 x 10-11

has || AA|| =5 x10-11, and

1
A+AA =
1

is singular.

In principle, because the HP-15C’s matrices are bounded
in size, exact arithmetic and exact internal storage could be
used to ensure 10-digit accuracy in matrix calculations.
This was considered prohibitively expensive, however. In-
stead, the HP-15C is designed to perform arithmetic and
store intermediate calculated values using a fixed number
of digits.

Numerical determinant, matrix inversion, and system
solution calculations using a fixed number of digits intro-
ducerounding errors in their results, These rounding errors
can be conceptually passed back to the input data and the
calculated results interpreted as exact results for perturbed
input data A+AA. If the norm of the conceptual perturba-
tion AA is comparableto 1/ || A~? || , the original nonsingu-
lar input matrix A may be numerically indistinguishable
from a singular matrix.

0.99999999995
0.99999999995

For example, a square matrix is singular if and only if at
least one of the diagonal elements of U, the upper triangular
matrix in the LU decomposition of A, is zero. But because
the HP-15C performs calculations with only a finite number
of digits, some singular and nearly singular matrices cannot
be distinguished in this way.

The matrix

3 3 1 0 3 3
B = = =LU
1 1 1/3 1 0 0
is singular. Using 10-digit accuracy, the calculated LU de-
composition is

1 0 3 3
LU =
0.3333333333 1 0 10-10

which is the decomposition of the nonsingular matrix

' 3 3
D =
0.9999999999 1

Hence the calculated determinants of B and D are identical.
On the other hand, the matrix

3 3
A=
1 0.9999999999

1 0 3 3
1/3 1 0 —10-10

is nonsingular. Using 10-digit accuracy, the calculated LU
decomposition is

1 0 3 3
LU =
0.3333333333 1 0 0

which is the LU decomposition of the singular matrix

3 3
C =
0.9999999999  0.9999999999

The calculated determinants of A and C are also identical.

Because the calculated LU decompositions of some sin-
gular and nonsingular matrices are identical, any test for
singularity based upon a calculated decomposition would
be unreliable. Some singular matrices would fail the test
and some nonsingular ones would pass it. Therefore, no
such test is built into the HP-15C.

Instead, if a calculated diagonal element of U, which we
call a pivot, is found to be zero during the LU decomposi-
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tion, rather than aborting the matrix calculation and re-
porting the input matrix to be singular, the HP-15C replaces
the zero pivot by a small positive number and continues
with the calculation. This number is usually small com-
pared to the rounding errors in the calculations. Specifi-
cally, it will be about 10 *° times the largest absolute value
of any element in that column of the original matrix. If
every element in that column of the original matrix has an
absolute value less than 107, the value 10™%° is used
instead.

An advantage of replacing zero pivots by nonzero pivots
is that matrix inversion and system solution calculations
will not be interrupted by zero pivots. This is especially
useful in applications such as calculating eigenvectors
using the method of inverse iteration. Example programs
calculating eigenvalues and eigenvectors can be found in
reference 3.

The effect of rounding errors and possible intentional
perturbations causes the calculated decomposition to have
all nonzero pivots and to correspond to a nonsingular ma-
trix usually identical to or negligibly different from the
original matrix.

Complex Matrix Calculations

The HP-15C only operates on real matrices, that is, ma-
trices with real elements. However, it is possible to repre-
sent complex matrices as real matrices and to perform ma-
trix addition, subtraction, multiplication, and inversion of
complex matrices and to solve complex systems of equa-
tions using these real representations.

Let Z = X + iY denote a complex matrix with real part X
and imaginary part Y, both real matrices. One way to repre-
sent Z as a real matrix is as the partitioned matrix

[ 1]

having twice the number of rows but the same number of

columns as Z. Complex matrices can be added or subtracted

by adding and subtracting such real representations.
Another computationally useful real representation for Z

is
- X -Y
Z =
Y X
having twice the number of rows, and columns as Z. The
HP-15C’s built-in matrix operation MATRIX 2 performs the
transformation

P > 7

The operation MATRIX 3 performs the inverse transforma-
tion

Z - z°
Suppose A, B, and C are complex matrices and A is
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invertible. Then complex matrix multiplication, inversion,
and system solution can be performed with real matrices
and built-in HP-15C operations using the relationships:

P ~
(AB) = AB,

-1

~ ~
(A7) = (a) ,

~ -1
AC=B-CP = (A) BP

These procedures are illustrated in the HP-15C Owner’s
Handbook.

Matrix Transpose

The operations MATRIX 2 and MATRIX 3 perform their
transformations using a matrix transpose routine. The rows
and columns of a matrix are interchanged to form the trans-
pose of that matrix. The transformation is performed in
place, replacing the original matrix by its transpose. This
routine is available to the user as MATRIX 4. Consider the
following example:

Here the elements of the matrices have been displayed in
a two-dimensional format. However, they are stored in a
one-dimensional sequence within the calculator’s memory.
For this example, the transpose operation changes the or-
dering of the elements within the calculator memory as

abcdef—->adbect

The MATRIX 4 operation moves the elements according to

O QT O

These movements form disjoint loops. The first value in
the sequence is the first candidate for moving. As a value is
copied into its destination, that destination is tagged in its
XS field. The previous value at that location is the next
candidate for moving. Movement along a loop continues
until a destination is encountered that is already tagged.
The content of the tagged destination is not changed and
the current loop is terminated. The value in the location
immediately following that tagged destination is the next
candidate for moving.

This operation continues moving values along loops
until the sequence is exhausted, at which point all destina-
tion tags are removed. Finally, the recorded dimensions of
the matrix are switched.



Accuracy of Matrix Calculations

Accuracy specifications for all matrix operations are
given inreference 3. These specifications are stated in terms
of both backward and forward error analysis. Reference 3
includes a general rule of thumb for the number of signifi-
cant digits in a calculated matrix inverse or system solution.
It also includes descriptions of techniques to improve upon
the accuracy of calculated system solutions and to reduce
the ill-conditioning of systems of equations.
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A Pocket Calculator for Computer

Science Professionals

This compact, yet powerful pocket calculator is designed
for technical professionals working in computer science
and digital electronics. Boolean operations and bit

manipulation are some of its capabilities.

by Eric A. Evett

OGIC DESIGN and computer programming require
mathematical operations not ordinarily provided by
w small calculators. A large amount of tedious paper-
work is often required to convert among number bases,
perform logic operations, shift and rotate bits in a word, or
check processor instruction flow. To simplify such work,
Hewlett-Packard recently introduced a programmable pock-
et calculator especially designed for people who deal with
bits. The HP-16C (Fig. 1), like other HP calculators, uses a
reverse-Polish-notation (RPN) system and provides stan-
dard floating-point decimal arithmetic (including square
root). Its novel capabilities become apparent, however,
when the HP-16C is switched into the integer mode. Only
integers are allowed in this mode, and they can be keyed in
and displayed in either hexadecimal, octal, binary, or dec-
imal format. In this mode, number base conversion, integer
arithmetic, logical operations, and bit manipulations can be
done.
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Integer Mode

In the integer mode, all numbers are represented inter-
nally in binary form. The word size is selected by the user
and can range from 1 to 64 bits. The user also can select
whether the numbers are to be interpreted as one's com-
plement, two's complement, or unsigned integers. In the
unsigned integer mode with a 64-bit word size, numbers up
to 25471 (18,446,744,073,709,551,615) can be represented.
Although the HP-16C normally displays the eight least-
significant digits of a number, a scrolling capability is pro-
vided to display higher-order digits.

Programming

In addition to the four-register RPN stack, 203 bytes of
user memory are available for storing program steps and use
as storage registers. When the program memory is cleared,
all 203 bytes are allocated to storage registers. The number
of storage registers available depends on the selected word

Fig. 1. The HP-16C Programma-
ble Calculator is designed for
computer science and digital elec-
tronics applications. Besides the
normal four-function calculator
features, it has a number of
capabilities for setting number
bases and word sizes, performing
Boolean operations, and ma-
nipulating bits.



bits (two consecutive 16-bit words) separated into three fields.
These fields are the sign, the exponent, and the mantissa. The
format is known as excess 256. Thus, a real number consists of
(see Fig. 1)
w Sign (8), bit 0 of the first 16-bit word. Positive=0, negative=1. A
value X and its negative —X differ only in the value of the sign
bit.
Exponent (E), bits 1 through 9 of the first 16-bit word. The
exponent ranges from 0 to 777 octal (511 decimal). This
number represents a binary exponent biased by 400 octal (256
decimal). The true exponent, therefore is E~256; it ranges from
—256 to +255.
= Fraction (F), a binary number of the form 1.xxx, where xxx
represents 22 bits stored in bits 10 through 15 of the first 16-bit
word and all bits of the second 16-bit word. Note that the 1
is not actually stored, there is an assumed 1 to the left of the

Real (Floating-Point) Format

Real numbers are represented in the HP 3000 memory by 32

binary point. Fioating-point zero is the only exception. it is

represented by all 32 bits being zero.

The range of nonzero real values for this format is from 0.863617
x10-77 0 0.1157920x 1078, The formula for computing the dec-
imal value of a floating-point representation is: Decimal value =
(—1)Sx2E-256xF,

Sign (Bit 0)

Exponent Fraction
(Bits

(Bits 1 10 9) 10 to 15)

(Bits 0 to 15)

~ N J

First 16-Bit Word Second 16-Bit Word

Fig. 1. Diagram of real (floating-point) format used in the HP
3000.

u U] Create mask of 23 bits, leftjustified.

EEZI s+t two's complement mode. EEZHR  extract upper 23 bits.

S e o @0 o
such that 2+ =original Input.

IEBE] 1eeding zeros wil be displayed. it yes, increment exponent.

' [ st |

PO AN Was input 02 SL
GTO

Froi
0

If yes, then branch to Label 1.

Bilas exponent. 287 =256+31
STO

Store biased exponent In index register.

} &34 Swap exponent and mantissa.
Set flag 0.
X<0 Mantissa negative?

IEAE] 1 yes. cloar nago.
BEZIR  Aveoiute vaiue of mantissa.
L4

[ 2 |
TR setword size 10 32, -
[ ] =
[ o |
[ o |
Round mantissa 10 23 bits.
[ 2]

Shift off implied 1 bit.

Recall biased exponent.
Concatenate exponent to fraction part.
Is mantissa sign to be positive?
EEIER ¥ yes, branch to Labet 1.

Set the sign bit.

Rotate sign, exponent, and fraction
to proper position.

EZXET  store the 32-bit resut in register 0.

Change word size to 16 bits.

EX3EE recen 16t word 1.
E3E]  recat 1601t word 2.

Fig. 2. Outline of HP-16C sub-
routine to convert numbers given
in the HP 3000 Computer's real
format to decimal floating-point
Jormat.
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Listing the features of a programmable calculator rarely pro-
vides a complete picture of its capabilities. Examples of the appli-
cation of the calculator's features are often required to de-
monstrate to the user what can be done and why a particular
feature is useful. Hence, several examples of the use of the
HP-16C are given below.

Add with Carry

The HP-16C can be programmed to simulate instructions
commonly found in commercial processors. The following sub-
routine performs an add with carry (Y+X+C—X). It adds the
numbers in registers X and Y along with the carry bit indicated by
the state of flag 4 and returns the result in the X register. The carry
flag is set (indicated by the C annunciator in the display) if there is
a carry-out of the most significant bit of the result.

001 LBL A  Labels subroutine

002 0

003 RLC Generates 0 or 1 depending on carry flag
004 + Adds carry to second operand
005 CFO

006 F?4 Copies carry fiag 4 to flag 0

007 SFO

008 + Adds first operand to the total
009 F?0

010 SF 4 Sets carry flag if first add carried
o011 RTN

To use this routine, enter the two operands in registers Y and X,
and press GSB A.

Using the HP-16C

Example:

2's Set two’'s complement mode

HEX Set number base to hexadecimal

8

WSIZE Set word size to 8

CF4 Clear carry flag

FE First operand

ENTER Enter first operand into Y register

72 Second operand

GSB A Displays 70 (FE+72+0)

with carry set (C annunciator on)

Bit Extraction

The following subroutine extracts a field from a bit pattern. The
field is specified by the bit numbers of the pattern corresponding
to the lowest-order and highest-order bits of the field. The least-
significant bit of the bit pattern is bit number 0. Hence, the resuilt in
the X register is the bits of the pattemn in the Z register from the bit
number in the Y register to the bit number in the X register,
inclusive.

001 LeL 8 Labels subroutine

002 R} Bring down value in Y register
003 RRn Right-justifies field

004 Rt Raise stack

005 LST x Recall Y value

006 - Subtract Y from X

007 1

008 + Computes number of bits in field
009 MASKR Creates mask same width as field
010 AND Extracts field

o1 HEX Exits in the hexadecimal mode
012 RTN

size. When the word size is eight bits, 203 registers are
available; a 16-bit word size results in 101 available regis-
ters, and so on. Each programmable instruction takes one
byte of memory. As program steps are inserted, the number
of available storage registers decreases. A program can have
up to 203 steps if no storage registers are required.

Editing capabilities to make program development easier
include insert, delete, back-step, single-step, and go-to-
line-number operations. The user may single-step through
program execution to help debug programs. Other pro-
gramming features include label addressing (sixteen
labels), subroutines (up to four levels deep), conditional
tests, branching, and six user flags.

These flags can be set, cleared, and tested under program
control. Three of the flags are special. Leading zero digits in
a word are suppressed in the display unless flag 3 is set. Flag
4 is the carry flag, and flag 5 is the overflow flag. Two
annunciators in the display (C for carry and G for > largest
representable number) give a visual indication of the
state of flags 4 and 5, respectively. The overflow flag is
set if the true result of an operation cannot be represented
in the selected word size and complement mode. The
carry flag is set under various conditions, depending on
the operation. For example, addition sets the carry flag
if there is a carry-out of the most significant bit; other-
wise the carry is cleared (see box above for examples).
The shift-left instruction sets the carry if a 1 bit is shifted
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off the left end of the word; otherwise the carry is cleared.

Logic Operations

The rich selection of bit manipulation and logical opera-
tions, along with user-selectable complement mode and
word size, make the HP-16C a flexible logic and program
design tool. Programs can be written to simulate individual
instructions commonly found on commercial processors, to
extract a field from a bit pattern, or to convert from one
numeric format to another.

A common problem is the conversion between the inter-
nal binary floating-point format of a particular machine and
decimal floating-point format. The HP-16C provides a fea-
ture that can be used to great advantage in programs de-
signed to perform such conversions. This feature provides a
mode for performing standard decimal floating-point cal-
culations. Upon switching from the integer mode to deci-
mal floating-point mode (by using the FLOAT function), the
integers y and x in the Y and X stack registers are converted
to the floating-point equivalent of 2*y, which is then placed
in the X register and displayed. Converting back to integer
mode (by pressing the HEX, DEC, OCT, or BiN keys), causes
the contents of the X register to be converted to a pair of
integers y and x such that y is a 32-bit integer (231< |y | <232
unless y=0) and 2*y is equal to the value in the X register
before mode conversion. The integers y and x are then
placed in the Y and X registers.




To use this routine, the user places the bit pattemn in register Z, the
number of the lowest-order bit in the field in register Y, and the
number of the highest-order bit in the field in register X. The user
then presses GSB B.

Example: Extract bits 2 through 5 from 39,4 (00111001).

8

WSIZE Set wordsize to 8

HEX Set hexadecimal mode

39 Bit pattern

ENTER

2 Lowest-order bit

ENTER

5 Highest-order bit

GSB B Displays E (1110) as resuilt.

Conversion Between Binary and Gray Code

Gray code has the property that only one bit changes between
the representations of any two adjacent numbers. If the word size
is n bits, then binary-to-Gray-code conversion is given by

GO = Bo XOR B1

G1 = B1 XOR Bz

Gp—2 = B,_2XOR B,_4
Gy_1=Bn_4
where G is the Gray code number, B is the binary number, and

subscript 0 indicates the least-significant bit of G and B, subscript
1 indicates the next least-significant bit, and so forth.

The Gray-code-to-binary conversion is given by !

By =Gy XORG,XOR - - - G,_,
B;=G;XORG,XOR * * * G,_q

By-2= Gn—z. XOR Gj,_

By1 =Gy
Binary-to-Gray-code subroutine: :
001 LBL C
002 ENTER Copies binary number to Y register ’
003 SR Shifts binary number in X register to i
the right |
004 XOR Computes Gray-code equivalent
Gray-to-binary-code subroutine: ]
001 LBLD !
002 ENTER Copies Gray code number to Y register |
003 LBL 2 f
004 SR Shift Gray code number in X registerto |
the right ;
005 XOR Exclusive OR operation :
006 LSTx Recall previous number ;
007 X0 Loop until Gray code number is O g
008 GTO 2 ‘
009 R} i
010 ATN !

To use these routines, the user sets the HP-16C to the binary |
mode by pressing BIN, places the number in the X register and |
presses @SB C for binary-to-Gray or GSB D for Gray-to-binary- |
code conversions.

B m Extract blased exponent part.
Set haxadecimal base mode. Recover fraction part.
Set two’s complement mode. —
B o
Set word size to 32 bits.

F?

Swap word 1 and word 2.

>
A
M
<

>
N
<

Shift word 1 16 bits to left.

Concatenate word 2 to word 1.

Shift sign bit left into carry flag.

ENTER

-

ts Input 07

i yes, branch to Label 0.

B

Z"',E
>'-
—] -

Create mask of 23 bits, right-justified. T
Extract fraction pert. RTN

Compute 2xy

Test carry flag. Was sign bit negative?
If yes, complement mantissa.
Arithmetic shift right mantissa 1 bit.

Swap mantissa and exponent part.

Rotate exponent part 9 bits left,
placing it at right end.

Unbias exponent. E—-278=E-256-32

Fig. 3. Outline of HP-16C sub-
routine to convert decimal
floating-point numbers into the
format used by HP 3000 Comput-
ers.
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The subroutines listed in Fig. 2 and Fig. 3 convert be-
tween the HP 3000 Computer's FORTRAN real (floating-
point) format? and decimal floating-point format (see box
on page 37). Because the HP-16C views bit 0 as the least
significant bit of a word and the HP 3000 views it as the
most significant bit, some of the steps listed in Fig. 2 and
Fig. 3 are used to convert between these two opposing
views.

To use these programs after they are entered in the HP-
16C, a user performs the following steps.

» HP 3000 to decimal:

1. Select octal base (OCT).

2. Enter word 1 in the Y register and word 2 in the X

register.

3. Execute GSB B. Answer is displayed.

4. Repeat steps 1, 2, and 3 for each new conversion.

» Decimal to HP 3000:

1. Select decimal floating-point mode (FLOAT 4).

2. Enter number in the X register.

3. Execute GSB A. Word 1 is placed in the Y register,

word 2 in the X register.
. Repeat steps 1, 2, and 3 for each new conversion.

'

ments
Several people made significant contributions to the
HP-16C software effort. John Van Boxtel developed many of
the fundamental design concepts. Rich Carone also contri-
buted to the software design and coded the complex

routines that format and build the display. Stan Blascow
did a large portion of the software testing and Diana Roy
wrote the owner’'s handbook.

References

1. M.E. Sloan, Computer Hardware and Organization, Science
Research Associates, Inc., 1976, pp 95-97.

2, FORTRAN Reference Manual, HP 3000 Computer Systems,
Hewlett-Packard, Santa Clara, 1978, Section IL

Eric A. Evett
i Eric Evett received the BS and MS de-
- grees in mathematics from the Univer-
sity of Arizona in 1970 and 1972. He
taught mathematics there until 1975
and then spent three years developing
software for calculators before joining
HP in late 1978. Eric wrote portions of
the microcode forthe HP-11C, HP-15C,
and HP-16C Calculators and now is an
R&D software project manager at HP’s
Corvallis, Oregon facility. He was bormn
in Colfax, Washington, and now lives in
Corvallis. He is married and has two
p= sons. His outside interests include
2 jogging, hiking, basketball, reading,
movies, and tennis (he played on his college's tennis team which
was then ranked 7th in the U.S.A.).

CORRECTION

In the March issue, the Pascal stalements al the top of the back page were printed in the
wrong order. Here is the correct version

buffer[w |:=getch;
c:=c+a[buffer[w]]:
wi=w+1;
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